

ZX81
Toddy

Forth-79
Version 1.13

User Guide
Second Edition

Toddy Software 2022

In memoriam of little Toddy, there
were countless happy moments that

we will keep forever in our
memories!

Toddy de Pedra de Guaratiba
(02/03/2008 - 20/06/2019)

PREFACE

Forth is a programming language created by Charles Moore in the 1970s and which became
relatively popular on microcomputers in the 1980s. Among the reasons for this popularity,
one can cite memory savings and processing speed, especially when compared to BASIC,
the predominant language in personal microcomputers.

The first contact I had with Forth was in 1984 through the compiler for ZX81 published by
Thomas Löw in issue 39 of the Brazilian magazine Micro Sistemas. Already used to the
slowness of ZX BASIC, I was very impressed with the speed of the Forth compiler, but for a
teenager living in a small town in the interior of Brazil it was extremely difficult to obtain
more information about the language so at this time I advanced no further.

Some time later, with the emergence of interest in retrocomputing (especially the ZX81) it
was a matter of time before my attention turned to Forth again, this time with a lot of
information available on the Internet. That's when I found a Z80 assembler listing of Fig
Forth and comparing it to Thomas Löw's Forth things started to make sense. And when I
later discovered Brad Rodriguez's Camel Forth, I was able to incorporate into the Löw’s
minimalist Forth several of the newly learned techniques, which resulted in the launch of
Toddy Forth in 2011.

Over the time that followed, several new releases were shared with the Sinclair Forum
community1 and some well-founded criticisms were put forward, Toddy Forth was still not a
consistent product, there were gaps to be filled. And that's what I started doing in mid-
2019 when I decided to do a complete overhaul of the Toddy Forth in order to make it
conform to an established standard and ended up opting for the Forth 79-Standard. And so
we come to the ZX81 Toddy Forth-79, a complete Forth system destined for the ZX81
microcomputer and whose resources and usability will be presented on the following
pages.

But first I would like to thank Thomas Löw for introducing me to Forth; Brad Rodriguez, for
his Camel Forth and the series of articles "Moving Forth", essential for understanding the
"insides" of the Forth; Lennart C. Benschop for the Editor, Double Extension, Floating Point
Extension and other word sets, taken from his excellent Forth-83 for ZX Spectrum; Coos
Haak Utrecht, for the Assembler Extension Word Set. And a very special thanks to Fred
(Moggy), for the criticisms, suggestions, testing, bug reports and text revision. Your
enthusiasm with Toddy Forth was a great incentive to continue development.

Good reading, and have fun using the Toddy Forth-79!

Kelly A. Murta
October, 2022

1 https://sinclairzxworld.com/

WHAT'S NEW IN VERSION 1.13

Toddy Forth-79 has undergone a major change since the release of version 1.03 that makes
it practically a new product:

- Built-in support for Chroma-81 has been moved to an external extension.

- A new keyboard routine, now independent of the video driver and functional wih
external mechanical keyboards.

- The SHIFT+BREAK combination is capable of breaking most programs, either in forth or
in machine code.

- Reorganization of system and user variables to make them compatible with the
adopted multitasking system.

- Word PAUSE renamed to WAIT.

- Removed the variable (WAIT) and added a new word PAUSE with similar function.

- Word REVERSE renamed to INVERSE.

- CH128 word renamed to CHR$128.

- Removed the words USER CLEAR and COPY.

- Removed the variable 'ERRNUM and created the word ERRNUM as execution vector.

- KEY EMIT AT PAGE ABORT recreated as execution vectors.

- Word SAVE renamed to FSAVE.

- Added the new words: FLOAD RAND RND INKEY PLOT MEM EXEC: IS
VALUE TO +TO.

- Extensive code reorganization.
- Added new Extension Word Sets for high-res graphics, multi-tasking and Chroma-81

interface support.
- Added Copy Line functions to the Editor.

Contents
1 The ZX81 Toddy Forth-79..9

1.1 Introduction..9
1.2 Hardware Requirements...9
1.3 Installation...10
1.4 Character Set..11

1.4.1 The CHR$128 Word...12
1.4.2 The INVERSE Word...13

1.5 The Keyboard...14
1.5.1 The Terminal Input Buffer..16

1.6 ZONX-81 Sound Generator Support..17
1.7 Execution Vectors And Values..18

1.7.1 Execution Vectors...18
1.7.2 Values...19

1.8 The PLOT Word...21
1.9 Pseudo-Random Number Generator...24
1.10 Error Conditions And Their Effects..25

2 Screens And Files..27
2.1 The RAM Disk...27
2.2 Loading And Saving Files..27
2.3 Loading Screens...29
2.4 Saving Your Changes In TF79...30

3 The Editor...32
3.1 Introduction..32
3.2 The Control Keys...33
3.3 The Editor Modes...34
3.4 The Editor Vocabulary...34

4 The Assembler Extension Word Set..38
4.1 Introduction..38
4.2 Loading The Assembler...39
4.3 Creating Code Words...39
4.4 The Registers...40
4.5 The Instruction Set...41
4.6 Control Structures..46

5 The Double Number Extension Word Set..49
5.1 Introduction..49
5.2 Extra Words...49

6 The Floating Point Extension Word Set...52
6.1 Introduction..52
6.2 Format And Precision...53
6.3 Words From FLOATING...53
6.4 Words From TRANSCEN..56

7 The Printer Extension Word Set..60
8 The Chroma-81 Extension Word Set...62

8.1 The Chroma-81 Interface...62
8.2 Operating The Chroma-81 With TF79..62
8.3 The Chroma-81 Word Set...64

9 The HIRES Graphics Extension Word Set..66
9.1 The Graphic Screen..66
9.2 The Text Terminal..66
9.3 The Graphic Terminal..67
9.4 Adding Some Colours..69
9.5 The HGR Words...70

10 Multi-Tasking Support..73
10.1 The Multi-Tasking Environment..73
10.2 Defining And Running Tasks...73
10.3 Controlling Tasks...74
10.4 Multi-Tasking Demo..74

11 Inside The Compiler..78
11.1 The Inner Interpreter..78
11.2 Header Structure..79
11.3 Memory Map...80
11.4 Changing The Memory Map..82

Appendix A - The Implemented Word Sets..85
A.1 The Stack Notation..85
A.2 Definition Of Terms:...85
A.3 Words In Forth Vocabulary..87

Appendix B - The Memory Diagrams..113
Appendix C - Character Sets..115

Chapter 1

1 THE ZX81 TODDY FORTH-79

1.1 INTRODUCTION

The Toddy Forth-79 (named TF79 in the rest of this document) is a complete Forth system
for the ZX81 microcomputers. It is based on Forth-79 Standard specifications, with the
REQUIRED WORD SET fully implemented, as well as some words from EXTENSION WORD
SET and from REFERENCE WORD SET. The DOUBLE NUMBER EXTENSION WORD SET and the
ASSEMBLER EXTENSION WORD SET are available to be loaded as needed. There are also
extensions to support floating point numbers, ZX Printer, multitasking, high-resolution
graphics and Chroma-81 color features, among others. Several words specific to the ZX81
hardware are also available.

TF79 is block-oriented, which means that the source code is stored in blocks of 1024 bytes.
These blocks (also called Screens) are stored in RAM disk. One or more of these blocks can
be saved as a single file on the SD card, to later be reloaded into the RAM disk.

Before proceeding, I would like to point out that this work intends to be a user guide for the
Toddy Forth-79, describing its resources, functionalities and technical characteristics. It’s
not intended to teach programming in Forth, for that there are already excellent
documentation available on the internet. I recommend starting with the following two
books:

- The Complete Forth, by Alan Winfield
- Starting Forth (First Edition), by Leo Brodie

Note: Most web versions of Brodies book has been modernised to ansi standard at the
request of Brodie himself and is not so good for Forth-79 so one should seek out the
original book itself or the original version in PDF as below.

https://ia803101.us.archive.org/6/items/winfield_alan_the_complete_forth/
winfield_alan_the_complete_forth.pdf

https://www.forth.com/wp-content/uploads/2018/01/Starting-FORTH.pdf

1.2 HARDWARE REQUIREMENTS

The TF79 does not support the use of cassette tapes, so is necessary to have a Zxpand
interface (either the classic or plus version) connected to the ZX81 to allow system loading

9

and also to load and save files, in addition to providing the required RAM for the system
(32Kb).

The system kernel is allocated in the lower part of RAM, between addresses 8192 and
16383. The memory area from 16384 to 32767 is dedicated to the system variables, screen
file, user dictionary, stacks, terminal buffers and the screen buffer. The memory from 32768
to 40959 is used as a RAM disk for storing Forth screens, with the capacity to store up to 8
screens.

At version 1.12, support for Chroma-81 was removed from the kernel, being provided
through an external extension that can be loaded when needed.

Sound generators compatible with the ZON X-81 continues to be supported, allowing direct
PSG programming to generate complex sounds.

TF79 is available in both standard and UDG versions. The standard version only requires the
ZXpand and uses conventional characters to represent ASCII characters not available on the
ZX81. The UDG version requires in addition to the Zxpand, hardware that allows the
redefinition of characters (such as the UDG4ZXPAND board created by Andy Rea or the
Chroma-81 interface), thus making available all the ASCII characters used by Forth.

1.3 INSTALLATION

The basic TF79 is made up of two files, TF79.BIN which is the system kernel to be loaded
into RAM at address 8192, and TF79.P which is the system loader. In addition, files with a
.F79 extension can coexist, they are equivalent to the original TF79.P with the included
user vocabulary saved with a proper name, such as EDITOR.F79, for example.

The original system comes with the following files and folders structure:

10

Copy the relevants folders to an SD card and insert it on ZXpand.

To load the system, go to the folder where you
saved the files and type from BASIC:

LOAD "TF79"

The initial screen will be presented with the
system identification, available memory
information and the prompt with the flashing
cursor. You will also hear an audible beep if you
have a sound generator connected.

Type VLIST and press NEWLINE to see the list of words included in the TF79 (press and
hold the SPACE key to pause listing or SHIFT+SPACE to stop the execution).

Note: The kernel will always be loaded from the current directory. For example, if you
want to use the Editor with the UDG version, you can proceed as follows, assuming
you are in the /TF79 directory:

CAT “>UDG”
LOAD “../EDITOR.F79”

The first sentence move to directory /TF79/UDG; the second loads the Editor from
upper directory and then loads the kernel (TF79.BIN) from current directory.

It’s also possible to load a .F79 file directly from the Forth environment using the
FLOAD word, in this case the TF79.BIN will not be reloaded:

FLOAD EDITOR.F79

1.4 CHARACTER SET

The TF79 works with ASCII characters that are internally converted to ZX81 codes when
sent to the terminal. The 79-Standard defines the ASCII character set (code 32 to 127) as
standard, but the TF79 adds an extra character subset to this (codes 128 to 160).

In the NOUDG version, characters missing on the ZX81 are represented by the following
reversed characters:

11

char ASCII char ZX CODE HOW TO TYPE IT
! 21 →  8D SHIFT 1
@ 40 →  8C SHIFT 2
23 →  95 SHIFT 3
% 25 →  99 SHIFT 4
[5B →  90 SHIFT Q
] 5D →  91 SHIFT W
& 26 →  97 SHIFT E
© 7F →  9A -
' 27 →  8F SHIFT T
_ 5F →  96 SHIFT Y
~ 7E →  94 SHIFT A
| 7C →  8E SHIFT S
\ 5C →  98 SHIFT D
{ 7B →  93 SHIFT F
} 7D →  92 SHIFT G
^ 5E →  8B SHIFT H

1.4.1 THE CHR$128 WORD

The UDG version uses by default the CHR$128 mode for the character generator. The
CHR$128 uses ZX character codes from 128 to 191 to provide 64 new characters, making a
total of 128 unique characters available that can be redefined at will. The FONTS folder
contains some alternative character sets that can be loaded at address 15360 ($3C00) with

15360 BLOAD font.fn.

To view the full TF79 character set, enter the following definition:

: CHARS CR 160 32 DO I EMIT LOOP ;

and enter CHARS to execute it.

12

Standard version UDG Version

The operating mode of the character generator can be changed with the word CHR$128:

 0 CHR$128 ---> disables CHR$128, returning to traditional operation mode
 1 CHR$128 ---> activates CHR$128 mode

The result is instantaneous, experiment to better understand the difference between the
two modes.

Notes:
1. CHR$128 only works with UDG devices that use bit 0 of the Z80's I register to access

the extra 64 characters. The UDG4ZXPAND don't respond to it and the switching must
be done physically through a jumper on the board.

2. TF79 ASCII characters have different encoding depending on the version used: standard
or UDG. Hence the need for two versions for each character set in the FONTS/UDG and
FONTS/NOUDG folders. You might be wondering why these character sets are needed
for the standard version? Simple, the print module uses the character set stored from
address 15360, so you can change it to have prints with different characters. And the
word CHR$128 also works with the ZX Printer.

1.4.2 THE INVERSE WORD

The print character routine makes an exclusive-or from the character code with the
contents of address 16430 (INVCHR) before sending it to the screen. The word INVERSE
switches the content of this address to 0 or 128, making it possible to switch the print
between white background/black char and black char/white background. Try the example:

13

INVERSE .” HELLO WORLD” INVERSE

The INVERSE word is more suitable for use with the standard version of TF79, but it can
also be used in the UDG version as long as the CHR$128 mode is disabled. Its use in
CHR$128 mode makes no sense.

1.5 THE KEYBOARD

The TF79 comes with a new keyboard routine with auto repeat and audible feeback for key
press (requires ZON X-81 or compatible PSG). The key combination SHIFT+SPACE is
constantly monitored and its use allows aborting the execution of any program, but only if
it is running in SLOW mode. This feature can be changed using STOPON / STOPOFF
words.

The standard ASCII characters are mapped to the keyboard as shown below:

14

Symbols are accessible by simultaneously pressing the SHIFT key. The SHIFT-0 erases the
last character entered and SHIFT-5 erases the entire line being typed. The NEWLINE key
informs that the line you typed is finished and the typed commands must be executed
(these work differently within the Screen Editor, as will be seen later on).

The SHIFT-9 key combination switches CAPS LOCK for lowercase letters. With the NOUDG
version or if CHR$128 mode is inactive, lowercase letters will be represented by reverse
capital characters (white letter, black background).

The character © and the extra subset (codes 128 to 160) are only available through their
respective character codes for use with the words EMIT and TYPE.

TF79 has the words KEY and INKEY for reading the keyboard. INKEY reads the
keyboard and leaves on the stack the ASCII code of the pressed key or 0 if no key was
pressed. KEY waits until a valid key is pressed and leaves its ASCII code on the stack.
With the word P@ it’s possible to read directly the port FEh that gives access to the
keyboard matrix. Following the keyboard representation with each address associated to
five keys and each key is associated with one bit from D0 to D5 of the byte read from the
FEh port.

Port
Address D0 D1 D2 D3 D4 D4 D3 D2 D1 D0

Port
Address

FBFEh 1 2 3 4 5 6 7 8 9 0 FAFEh

FCFEh Q W E R T Y U I O P F9FEh

FDFEh A S D F G H J K L NL F8FEh

FEFEh SH Z X C V B N M . SP F7FEh

P@ reads the port addressed by the number on the stack, leaving the byte read in the TOS.
So to know if the '0' key was pressed, we do

64254 P@ \ read port FAFEh
1 AND \ mask bit 0

which will leave 0 on the stack if the key was pressed or 1 otherwise.

To avoid key bouncing on external mechanical keyboards, such as the Memotech, the
keyboard reading routine implements a bounce delay of approximately 7ms, which is
suitable for most cases. However, if a longer delay is still required, you can change the value

15

of address 8732 (221Ch) which initially contains the value 30. For a bounce time of 9.6ms
type (each additional unit adds approximately 0.24ms):

40 8732 C!

Note: It should be noted that external keyboards such as the Fuller or Dk’tronics types
which connect to the motherboard in the same manner as the membrane do not
suffer debounce problems to the same degree as the Memotech which uses its own
box of electronics to connect to the computer.

Likewise, the keyboard repeat rate can be changed by changing the content of the bytes at
addresses 8707 and 8725, respectively the waiting time to start repeating and the
repeating time. The default value is 23 and 2 (I know, no much room for decrease the last).

Once you've found the suitable values for you, the changes can be saved permanently by
typing:

8192 8192 BSAVE >TF79.BIN

This will overwrite the current file with the new version. If you want to preserve the current
file, change the character > to + in the filename (refer to the ZXpand manual for details).

1.5.1 THE TERMINAL INPUT BUFFER

With the TF79 in interactive mode, everything typed echoes to the screen and is
simultaneously stored in the terminal input buffer (TIB) before being interpreted, which
occurs when the NEWLINE key is pressed.

The TIB's size is 128 bytes and when it is completely populated, the interpreter
automatically takes control and starts to interpret what was typed. If this happens while
you are entering a colon definition, the definition is likely to be incomplete. If the last word
has not been truncated, Forth will remain in compilation mode and you can complete the
definition by typing the remainder ending it with ; .

But if the last word was truncated, it will likely not be found by the interpreter, generating
an error warning and leaving an incomplete definition in the dictionary.

To remove the last incomplete definition from the dictionary, it’s necessary to make it
findable using the word SMUDGE and then remove it with FORGET:

SMUDGE FORGET <incomplete word>

16

1.6 ZONX-81 SOUND GENERATOR SUPPORT

The ZON X-81 was a Programmable Sound Generator produced by BI-PAK Semiconductors,
based on the AY-3-8912 chip with 3 sound channels and full control over pitch, volume,
tones and noise, all with envelope control. The technical details of PSG programming will
not be discussed here, for that, consult the ZON X-81 manual and/or the AY chip datasheet,
both available with a quick google search.

TF79 has two words to access PSG: BELL and SOUND.

BELL (--)

Emits a 1318 Hz sound lasting approximately 40ms. It is used in the word WARM, executed
in the initialization of the TF and after the occurrence of an error.

SOUND (d r --)

Used to program the PSG, sends the number d to the register r of the AY-3-8912.

Follow some examples of sound effects that can be generated by PSG. Start defining the
following auxiliary words (is not necessary to type the comments in parentheses or after
the backslash):

16434 CONSTANT SEED

: RANDOMIZE 16436 @ SEED ! ;

: RND (n1 -- n2) \ generates a random number between 0 and n1-1

 SEED @ 31521 * 6927 + DUP SEED ! U* SWAP DROP ;

: DLY (n --) \ delay

 0 DO LOOP ;

: CLPSG 14 0 DO 0 I SOUND LOOP ;

: MSOUND (dn rn ... d2 r2 d1 r1 n --) \ program simultaneously

 0 DO SOUND LOOP ; \ n registers

Note:
Before running any of the examples it’s recommended to execute CLPSG to clear the
PSG registers.

Simple sounds (type in interpretive mode):

31 6 55 7 16 8 2 12 14 13 5 MSOUND \ Train
100 0 62 2 45 4 56 7 8 8 8 9 8 10 7 MSOUND \ Discord
210 0 90 2 60 4 56 7 16 8 16 9 16 10 40 12 8 13 9 MSOUND \ Bell

17

Complex sounds:

: BIRDS

 RANDOMIZE

 BEGIN

 13 8 254 7 0 1 3 MSOUND 85 RND 15

 DO I 0 SOUND 20 DLY

 LOOP ?TERMINAL

 UNTIL ;

: ADREAM \ American Dream

 62 7 SOUND

 BEGIN

 2 -1

 DO 1 I - 7 * 2+ I 1+ 7 * 1+

 DO I 8 SOUND 51 100

 DO I 0 SOUND 15 DLY -1 +LOOP

 J NEGATE

 +LOOP 2

 +LOOP ?TERMINAL

 UNTIL ;

: WHISTLING 15 8 62 7 2 MSOUND 193 48 DO I 0 SOUND 30 DLY LOOP 63

7 SOUND ;

: EXPLOSION 31 6 7 7 2 MSOUND 11 8 DO 16 I SOUND LOOP 0 13 56 12 2

MSOUND ;

: LASER 0 13 15 12 16 8 55 7 4 MSOUND 32 1 DO I 6 SOUND 50 DLY 3

+LOOP ;

1.7 EXECUTION VECTORS AND VALUES

1.7.1 EXECUTION VECTORS

The action of a dictionary word is usually fixed at the time of its definition. The word can be
redefined later and from then on all new references to the word will use its new definition.
However, all previous references will still use the old meaning. Through the use of
execution vectors it's possible to change the definition of a word in such a way that all
references already compiled will also use the new version.

In TF79 an execution vector can be created with the word EXEC:. For example:

EXEC: CAKE

creates the CAKE execution vector. Initially this does nothing, but the action of the word
can be set at any time with IS, as follows:

: CREAM-CAKE CR ." YUMMY!" ;

' CREAM-CAKE IS CAKE

Now, whenever you execute the word CAKE, you'll get the response "YUMMY!". Now try:

18

: MUD-CAKE CR ." YUCK!" ;

' MUD-CAKE IS CAKE

Now, CAKE provokes the response "YUCK!". The power of these words is that, unlike
simply redefining a word with the same name, the action of the word changes immediately
in every definition it has been compiled into.

TF79 comes with important words defined as execution vectors, which means that by
substituting your own definitions the behavior of the system can be easily modified.

These are the words defined as execution vectors in TF79:

KEY

EMIT

AT

PAGE

ERRNUM

ABORT

Note: Every execution vector is a code definition that has the following contents in its code
field:

LD HL,exec_address
JP (HL)

So, you should avoid defining execution vectors at memory addresses above 32767.

1.7.2 VALUES

A VALUE is a hybrid of VARIABLE and CONSTANT. We define a VALUE just like we
define a VARIABLE:

VALUE THIRTEEN ok

This will create the value THIRTEEN initialized to 0.

Just as we do with a VARIABLE we can change the value of THIRTEEN, for that we will
use the word TO as follows:

13 TO THIRTEEN ok

However, we invoke the new VALUE the same way we do with a CONSTANT:

THIRTEEN . 13 ok

49 TO THIRTEEN ok

19

THIRTEEN . 49 ok

We can also add a number to a VALUE with the word +TO:

VALUE A 10 TO A ok

5 +TO A ok

A . 15 ok

The words TO and +TO also works with words definitions, replacing the VALUE that
follows it with whatever is currently in the TOS, so it can be dangerous to follow TO/+TO
with anything other than a VALUE. It’s perfectly safe to use TO/+TO with VARIABLEs
and CONSTANTs.

You can see examples of using execution vectors and VALUEs in the definitions of LINE
and CIRCLE in the next section.

20

1.8 THE PLOT WORD

TF79 has the PLOT word that allows you to manipulate graphic elements commonly called
pixels. Each pixel corresponds to 1/4 of a character on the screen and is specified through
its coordinates (x,y), on a screen 64 pixels wide and 48 pixels high. The pixel located at the
lower left edge of the screen has coordinates (0,0) and the pixel located at the upper right
edge has coordinates (63,47).

Once the pixel location is defined, you must decide what to do with it. There are four
possibilities, or plotting modes:

0 - Set it white (unplot)
1 - Set it black (plot)
2 - Leave it alone (move)
3 - Change it (invert)

So PLOT needs three numbers on the stack: (x-coordinates, y-coordinates, ploting-mode
--).

Try:

32 24 1 PLOT

which will make a little black square appear at the middle of the screen. The best thing to
do is experiment with various coordinates and plotting modes to get familiar with it.

Words for plotting lines and circles with PLOT are defined next:

21

\ BRESENHAM'S LINE ALGORITHM
\ FROM ROSETTACODE.ORG
EXEC: STEEP \ NOOP or SWAP
EXEC: YSTEP \ 1+ or 1-

VALUE Y VALUE COLOR
VALUE DELTAX VALUE DELTAY

: LINE (x0 y0 x1 y1 color --)
 TO COLOR
 ROT SWAP (x0 x1 y0 y1)
 2DUP - ABS >R 2OVER - ABS R> <
 IF ' SWAP \ swap use of
 \ x and y
 ELSE 2SWAP ' NOOP
 THEN IS STEEP (y0 y1 x0 x1)
 2DUP >
 IF SWAP 2SWAP SWAP \ ensure
 \ x1 > x0
 ELSE 2SWAP
 THEN (x0 x1 y0 y1)
 2DUP >
 IF ' 1- ELSE ' 1+
 THEN IS YSTEP
 OVER - ABS TO DELTAY TO Y
 SWAP 2DUP - DUP TO DELTAX
 2/ ROT 1+ ROT (error x1+1 x0)
 DO I Y STEEP COLOR PLOT
 DELTAY - DUP 0<
 IF Y YSTEP TO Y DELTAX +
 THEN
 LOOP DROP ;

\ MIDPOINT CIRCLE ALGORITHM

VALUE X VALUE Y VALUE C
VALUE P VALUE X1 VALUE Y1
VALUE PY VALUE PXY

: CIRCLE (x y r c --)
 TO C TO X1 TO Y TO X
 0 TO P 0 TO Y1
 BEGIN X1 Y1 < NOT WHILE
 P Y1 2* + 1+ TO PY
 PY X1 2* - 1+ TO PXY
 X X1 + Y Y1 + C PLOT
 X X1 - Y Y1 + C PLOT
 X X1 + Y Y1 - C PLOT
 X X1 - Y Y1 - C PLOT
 X Y1 + Y X1 + C PLOT
 X Y1 - Y X1 + C PLOT
 X Y1 + Y X1 - C PLOT
 X Y1 - Y X1 - C PLOT
 PY TO P 1 +TO Y1
 PXY ABS PY ABS < IF
 PXY TO P -1 +TO X1 THEN
 REPEAT ;

These words are available in the SCREENS folder, as files LINE.BLK and CIRCLE.BLK. Load
them with

RUN SCREENS/LINE.BLK ok

RUN SCREENS/CIRCLE.BLK ok

Now, try this code:

: MOIRE (step --)

 PAGE 64 0

 DO I 0 63 I - 47 1 LINE

 I 47 < IF 0 I 63 47 I - 1 LINE THEN

 DUP +LOOP KEY 2DROP PAGE ;

and then enter 2 MOIRE to see the result.

Also try with other numbers (3, 4, 5,…).

22

2 MOIRE CIRCLES

The concentric circles in the last image were generated by the following word:

: CIRCLES PAGE
 30 0 DO 32 24 I 1 CIRCLE
 2 +LOOP ;

Notes:
1. The last coordinates (x,y) plotted are stored at addresses 16438 and 16439,

respectively. PLOT accepts off-screen coordinates (x>63 and/or y>47), which
allows drawing lines and circles that go beyond the screen boundaries, but
values above 255 will produce erroneous results.

2. In the UDG version PLOT only works correctly with CHR$128 mode enabled.

23

1.9 PSEUDO-RANDOM NUMBER GENERATOR

Something that is often very useful in certain applications is a random number generator,
for example to simulate rolling dice. However, it is very difficult to produce random
numbers using an 8-bit computer, but relatively easy to produce a sequence of numbers
generated by a mathematical operation that appear to be random. These are commonly
known as pseudo-random number generators (PRNG).

TF79 comes with a fast PRNG that uses the 'xor-shift' technique to produce a sequence of
numbers with enough characteristics to be considered random for most needs. This
generator produces a sequence of numbers from a starting number known as seed.

TF79 uses the words RAND and RND to generate pseudo-random numbers. RAND stores
the stack top number in the SEED system variable (16434) to be used by RND, but if this
number is null, the seed will be taken from the FRAMES system variable (16436). RND
generates a number between 0 and the number in TOS – 1. Try the example below:

: MEASLES PAGE
 BEGIN
 64 RND 48 RND 1 PLOT
 AGAIN ;

0 RAND MEASLES

For the same root, the sequence of numbers generated by RND will always be the same.

24

1.10 ERROR CONDITIONS AND THEIR EFFECTS

When an error is detected the following will occur:

- An error message will be displayed.
- The name of the Forth word that caused the error will be displayed.
- ABORT will be executed, returning the system to the interpreter and clearing the

stacks.
- If the error occurs while loading a screen, the error location will be placed on the stack

so that when typing WHERE the Editor will be started with the cursor positioned to the
right of where the error occurred.

Not all error conditions will be detected and no error will be reported under the following
conditions:

- Division by zero, the result -1 will be returned on the stack.
- Negative number when the standard requires a positive number. In this case the

number will be treated as an unsigned number.
- Wrong handling of the Return Stack, usually causes the system to crash.
- Invalid address provided for EXECUTE.
- Wrong construction of the IF-ELSE-THEN, BEGIN-UNTIL-WHILE-REPEAT and
DO-LOOP structures.

- Stack imbalance when defining new words.
- Stack overflow.
- Execution of compilation words during interpretive mode.

Most of these errors have the potential to cause the system to crash.

25

Chapter 2

26

2 SCREENS AND FILES

2.1 THE RAM DISK

The source code in Forth is stored in blocks (also called screens) of 1Kb each. For
convenience, the screens in Forth are stored in a RAM disk located in memory from the
address stored in the LO variable until the end of the RAM (by default, from 32768 to
40959). The constant #SCR provides the total number of screens available on the RAM
disk (8 screens by default).

Before using the RAM disk is advisable to clean it with the FORMAT command.

2.2 LOADING AND SAVING FILES

The command

n GET name

loads the file with the specified name from the SD card placing them in RAM disk from
screen n.

The command

n1 n2 PUT name

saves to SD card the screens n1 to n2 with the chosen file name.

The command

n1 n2 INDEX

shows the first line of each screen from number n1 to n2. Therefore, it is advisable to store
a comment (describing the screen) on the first line of each screen.

The command

DELETE name

27

deletes the specified file from the SD card.
The command

n LIST

displays the contents of screen n. As in the word VLIST, the listing is paused while the
BREAK key is pressed.

The command

addr n BSAVE name

writes to the file with the specified name the block of n bytes located from the address
addr.

You can add the characters + and > at the beginning of the name to force the action in case
a file with the same name already exists:

addr n BSAVE +name

will rename the target file to name .BAK unless a backup already exists, in which case error
ZXP:8 normally occurs.

addr n BSAVE >name

will silently overwrite the target file if it already exists.

Note: If no filename extension is provided, ZXpand will automatically add the .P
extension, so always try to use a descriptive extension of the type of file to be
created. For screen files the conventional is to use the .BLK extension.

addr BLOAD name

loads the specified file into the addr address.

Note: In the above commands, where applicable, the name argument can include the
path in the referenced file name.

28

The command

CAT path

List the contents of the directory specified by path or of the current directory if path is not
specified. Examples of use:

CAT shows contents of current directory
CAT dir shows contents of directory dir
CAT / shows contents of root dir
CAT >dir moves to directory dir
CAT >.. move up one directory level
CAT >/ move to root directory
CAT +dir creates a new directory dir
etc

When CAT fills the screen, the listing is paused until a key is pressed.

2.3 LOADING SCREENS

The command

n LOAD

will load the source code of the Forth program from screen n (previously loaded into RAM
disk by the word GET). All text on the loaded screen will be interpreted as if it was being
typed on the command line.

The word '\ ' (a backslash followed by a space) means a comment until the end of the
current line.

The --> command can take place on one screen and means that the next screen must be
loaded as well.

The command

RUN name

is equivalent to

29

1 GET name
1 LOAD

It will load a file onto the RAM disk and immediately load (compile or execute) the source
code contained in the screen 1 of that file.
The screens can contain LOAD commands, so that other screens can be loaded from one
screen.
When an error occurs during loading, ABORT will leave the value of >IN and the number
of the screen where the error occurred on the stack, so WHERE can be used to starts the
editor on the given screen, with the cursor positioned to the right of the word that caused
the error.

2.4 SAVING YOUR CHANGES IN TF79

To save the extended Forth system you must use the word FSAVE:

FSAVE name

Ex: FSAVE EDITOR.F79

This will generate the EDITOR.F79 file that can be loaded in the usual way from BASIC with
the command LOAD "EDITOR.F79" or directly from Forth with FLOAD
EDITOR.F79. If a file with the same name already exists, the characters + or > can also
be used to direct the FSAVE action, as seen in section 2.2.

Note: The use of the .F79 extension for compiled Forth files is to differentiate them from
normal .P files. If no extension is provided, ZXpand will automatically add the .P
extension.

IF you make any changes to the kernel, such as replacing the character set with another
one, you can permanently save changes with the BSAVE:

8192 8192 BSAVE >TF79.BIN

or

8192 8192 BSAVE +TF79.BIN

30

Chapter 3
31

3 THE EDITOR

3.1 INTRODUCTION

The Screen Editor was developed by Lennart Benschop for his ZX Spectrum Forth-83
(https://lennartb.home.xs4all.nl/index.html) and adapted for use with the TF79, including
the new copy line and paste line functions. Lennart kindly granted me permission to embed
his Editor with the TF79, thank you very much Lennart!

The editor's source code is available in the SCREENS folder, to load it enter the sequence:

RUN SCREENS/EDITOR.BLK

Note: The editor already compiled is available for immediate use, you can load it from
BASIC with

LOAD "EDITOR.F79".

Traditionally Forth screens are formatted in 16 rows by 64 columns, but in TF79 screens of
32 rows by 32 columns (1024 bytes) are defined.

The screen editor is started with n EDIT, where n is the number of the screen to be
edited. Due to the limitations of the ZX81, the Forth screen will be divided into two parts of
16 rows by 32 columns, being shown one half at a time with the cursor. The screen number
will be displayed at the bottom, followed by the letter A if the top half is shown or the
letter B if the bottom half is shown. Further to the right, on the same line, the operating
status of the editor (EDT or CMD) is informed.

32

3.2 THE CONTROL KEYS

The editor starts in Edit Mode (EDT) where the following keys have a special function:

Cursor keys (SHIFT+5 to SHIFT+8): Moves the cursor.
RUBOUT (SHIFT+0): Deletes the character at the cursor location. The rest of the line shifts
one position to the left. If a word is divided between the end of the current line and the
beginning of the next line, the subsequent lines scroll to the left, preventing those words
from being divided.
SHIFT+9: switches the CAPS LOCK
NEWLINE: Moves the cursor to the first position on the next line.
SHIFT+NEWLINE: Switches to command mode (CMD).

The Command Mode provides the following function keys:

6: Insert a blank line at cursor location. The lines below move one position down, the last
line is deleted.
7: copy line at cursor location to PAD and then delete it. The lines below move up one
position, a blank line appears at the end.
8: Inserts a space at the cursor location. The rest of the line changes one position to the
right. If the rightmost character at the end of the line is not a space or if the last word on
the current line would be scrolled along with the first word on the next line, it will move to
the next line. One or more subsequent lines can also be shifted to the right.
C: copy line at cursor location to PAD.
V: clears the current screen.
E: Erases the line at cursor location by filling it with spaces.
H: moves cursor to the first position on first line of current screen.
K (+): moves to next half of screen. From 1A to 1B, from 1B to 2A.
J (-): moves to previous half of the screen. From 2A to 1B, from 1B to 1A. Both keys can be
used to scroll through the RAM disk.
R: replaces line at cursor location with content of the PAD.
Q: exits the editor. You can undo the edits on the last screen with EMPTY-BUFFERS.

To return to Edit Mode, touch the NEWLINE key.

33

3.3 THE EDITOR MODES

The editor can be operated in two modes: file mode and block mode.

The FILE command puts the editor in file mode. The entire RAM disk is treated as a large
text file. Insertions and deletions cover the entire RAM disk. The text will be moved across
the screens when lines are inserted or deleted. The cursor keys also move across screens.

The BLOCKS command puts the editor in block mode. Each screen is treated individually.
If a line is inserted, the last line on the current screen will disappear and will not be moved
to the next screen. This is the normal way to edit source code in Forth.

3.4 THE EDITOR VOCABULARY

Words from this vocabulary are used internally by the editor and are not normally used by
other programs, so the descriptions are very short. The editor works on data in the block
buffer when it is in BLOCKS mode and directly on the RAM disk in FILE mode.

CT -- addr
timer for blinking cursor.

CUR c1 c2 --
switch between cursor and text character.

DEL --
erases the character at the cursor position.

DN --
moves the cursor one line down.

DRLIM -- addr
one more than the last RAM disk address (40960 by default). If the RAM disk is moved or
has its capacity changed, DRLIM must be adjusted to reflect the new condition.

EKEY -- c
reads a character from the keyboard and returns the ASCII value as c.

HO -- addr
variable containing horizontal cursor position.

34

HOME --
moves cursor to the start of the current screen.

INS --
inserts a space character at the cursor position.
LCLR --
fills current line with blanks.

LCPY --
copy current line to PAD.

LDEL --
deletes the current line.

LE --
move the cursor one position to the left.

LIM -- addr
One more than the last address of the text. It is the address beyond the block buffer in
BLOCKS mode, it is 40960 in FILE mode.

LINS --
inserts a blank line.

LPOS -- addr
start address of the current line.

LREPL --
replace the current line with the contents of the PAD.

LREST -- u
number of characters to be displayed on the screen from the current line.

LST --
prints the current half screen on the video screen with a line below it showing the screen
number and A or B.

PD --
moves half a screen down.

35

POS -- addr
returns the address in the text.

PU --
moves half a screen up.

REST -- u
number of characters to be displayed on the screen after the cursor position.

RI --
moves the cursor one position to the right.

SADR -- addr
returns the start address of the current screen or block buffer.

SCLR --
fill current screen with blanks.

SET --
Set print position on video screen to cursor location in text.

TXT -- addr
variable containing the editor mode (BLOCKS or FILE).

UP --
Moves the cursor one line up.

VE -- addr
variable containing the vertical position of the cursor from the start of the current screen
(range 0..31).

36

Chapter 4
37

4 THE ASSEMBLER EXTENSION WORD SET

4.1 INTRODUCTION

Using the assembler you can create words in machine code. This manual assumes that you
are familiar with the Z80 and its standard mnemonics. There are two reasons why this
assembler uses mnemonics that are different from the standard:

• The standard assembler uses one and the same word as a mnemonic for instructions
that must be translated differently into machine code.
For instance LD is used for

LD A,B
LD (IX+12),23
LD HL,(RPTR)
LD A,I
LD SP,HL

and all these use different opcodes.
• Forth is suitable for expressions in postfix notation. Therefore it is straightforward to

write an assembler that expects opcode mnemonics after the operands and the use of
expressions in operands is straightforward as well.

Labels are hardly ever used in a FORTH assembler. Instead we make use of control
structures like IF..THEN, as is done in FORTH as well.

This assembler was designed by Coos Haak in Utrecht, The Netherlands and he used it in his
own FORTH. It was ported to FORTH83 by L.C. Benschop and to Toddy Forth-79 by myself.

38

4.2 LOADING THE ASSEMBLER

The assembler consists of three files: TASM.BLK (size 1 screen), ASSEMBL1.BLK and
ASSEMBL2.BLK (sizes 7 and 1 screens, respectively). If you desire to have the assembler as
a permanent part of FORTH (for instance if you desire to save the system complete with the
assembler), you type:

RUN ASSEMBL1.BLK

and then you can save the system as described in section 2.4.

If you use the assembler temporarily, for instance just to load other extensions like the
Double Number Extension Word Set, you type:

RUN TASM.BLK

This way the assembler is loaded at a high memory address outside the dictionary, leaving
approximately 10Kb of memory available for use with the Assembler. With the command
DISPOSE you can remove the assembler from the system after use and any words
defined later (including code definitions created with the assembler) will remain in the
dictionary.

4.3 CREATING CODE WORDS

For the creation of code definitions, the following words are available. If the word is
followed by the letter A, the word is part of the Assembler Extension Word Set. If the word
is followed by the letter F, it is located in the FORTH vocabulary, otherwise it is located in
the ASSEMBLER vocabulary. Assembling state means: interpretation state with
ASSEMBLER as the CONTEXT vocabulary and BASE set to 16.

;C -- F
synonym for END-CODE

;CODE -- FICA
Assembler version of DOES>. Used in a colon-definition containing CREATE. Compiles
(;CODE) and puts FORTH in the assembling state. The colon definition will at runtime
modify the code field of the defined word, so it calls the machine code assembled after
;CODE. The created word will in turn call the machine code assembled after ;CODE with
the parameter field address on the stack.

39

ASSEMBLER -- FA
Vocabulary containing all Assembler mnemonics, register definitions and the like.

CODE -- FA
reads a word from the input stream and creates a code definition with that name. Puts
FORTH in the assembling state and sets the 'smudge' bit, so the word will not be found.

END-CODE -- FA
ends a code definition. Clears the 'smudge' bit, so the word defined latest can be found.
CONTEXT is set to CURRENT and BASE is set to 10. Use this word to terminate an
assembler definition that was started with CODE, ;CODE or LABEL.

ENDM -- IC
synonym for ; ends a macro.

LABEL -- F
reads a word from the input stream and creates a word with that name, which will return
its parameter field address at runtime. Next it puts FORTH in the assembling state. A word
created with LABEL can be used as a jump or call address in the definition of other code
words.

MACRO -- F
Like : but makes ASSEMBLER the context vocabulary and sets BASE to 16. When the
macro is executed, it will assemble (add to a new code definition) the instructions that are
contained in it.

XY -- addr F
variable indicating which of the two index registers will be used. Values are 0DDH for IX,
0FDH for IY, just like the opcode prefixes used by the Z80.

4.4 THE REGISTERS

The assembler uses the names A, B, C, D, E, H and L for the 8-bit Z80 registers. In addition it
uses the name M, which can be used in most places where a register is allowed. M is the
memory address pointed to by HL (this is like the 8080 assembler that uses M instead of
(HL)).

40

Register pairs are named B, D and H to indicate the BC, DE and HL register pairs
respectively. In addition SP an AF are register pair names. AF is only allowed with PUSH and
POP. B, D, H and SP are allowed in many instructions using register pairs.
The order in two operand instructions is source followed by destination, which is the
reverse of standard Z80 or 8080 notation. Hence

B C LD

is equivalent to

LD C,B

Use of index registers IX and IY:
• Use the word X in front of instructions where use of the HL register is implicit, for

instance X LDSP to indicate LD SP,IY
• Use XH or XL instead of H or L for instructions that use H or L explicitly.
• For instructions that actually do indexing (IY+12) instead of (HL), use special mnemonics

starting with)

By default the chosen X register is IY. The IX register is tied up by the video routines and will
hardly ever be used on the ZX81.
The word %X changes the used index register to IX, %Y changes it back to IY.

4.5 THE INSTRUCTION SET

We use the same stack notation as in glossary list, but with the following additions to
denote values (all values are a single stack entry):

b: bit 0-7
cc: condition code: z, cs, pe, m, v or their negations obtained with the word NOT
r: register A, B, C, D, E, H, L or M
rp: register pair B, D or H
rps: register pair or SP.
rpa: register pair or AF.
disp: displacement between -128 and 127 for use with indexed addressing.

LD r1 r2 --
copies r1 to r2. Equivalent to LD r2, r1

)LD r disp --
loads r from address IY+disp. Equivalent to LD r,(IY+disp)

41

)ST r disp --
writes r to address IY+disp. Equivalent to LD (IY+disp),r

LD# 8b r --
loads r with immediate value 8b. Equivalent to LD r,8b

)LD# 8b disp --
Loads immediate value 8b at address IY+disp. Equivalent to LD (IY+disp),8b

MOV rp1 rp2 --
copies register pair rp1 to rp2. Assembles to two Z80 instructions. For example D B MOV
is equivalent to
 LD B,D
 LD C,E

LDP# 16b rps --
loads register pair rps with immediate value 16b. Equivalent to LD rps,16b

LDP addr rps --
loads register pair rps from address addr. Equivalent to LD rps,(addr)

)LDP rps disp --
loads register pair rps from address IY+disp, B 2)LDP is equivalent to:
 LD C,(IY+2)
 LD B,(IY+3)

STP addr rps --
writea register pair rps to address addr. Equivalent to LD (addr),rps

)STP rps disp --
writes register pair rps to address IY+disp. B 2)STP is equivalent to:
 LD (IY+2),C
 LD (IY+3),B

LDHL addr --
like LDP, but for HL register. Uses shorter opcode form.

STHL addr --
like STP, but for HL register. Uses shorter opcode form.

42

LDA addr --
loads A from address addr. Equivalent to LD A,(addr)

STA addr --
writes A to address addr. Equivalent to LD (addr),A

LDAP rp --
rp=B or D only! Loads A from address in rp. Equivalent to LD A,(BC) or LD A,(DE).
But use M A LD for LD A,(HL) !!!

STAP rp --
rp=B or D only! Writes A to adres in rp. Equivalent to LD (BC),A or LD (DE),A
But use A M LD for LD (HL),A !!!

LDSP --
loads SP with HL. Equivalent to LD SP,HL

LDAI --
loads A with I. Equivalent to LD A,I

LDIA --
loads I with A. Equivalent to LD I,a

EXAF --
exchanges AF and AF'. Equivalent to EX AF,AF'

EXDE --
exchanges DE and HL. Equivalent to EX DE,HL

EXSP --
exchanges HL with top element on stack. Equivalent to EX (SP),HL

CLR rps --
Loads rps with 0. Equivalent to LD rps,0

ADD r --
adds r to accumulator A. Equivalent to ADD A,r
The instructions ADC, SUB, SBC, AND, XOR, OR and CP work the same way.

)ADD disp --
adds contents of address IY+disp to accumulator A. Equivalent to ADD A,(IY+disp)

43

The instructions)ADC,)SUB,)SBC,)AND,)XOR,)OR and)CP work the same way.

ADD# 8b --
adds constant 8b to accumulator A. Equivalent to ADD A,8b
The instructions ADC#, SUB#, SBC#, AND#, XOR#, OR# and CP# work the same way.

ADDP rps --
adds rps to HL register. Equivalent to ADD HL,rps
The instructions ADCP, SUBP and SBCP work the same way.
Note that SUBP is a macro composed of A AND and rps SBCP

INC rps --
increments register pair rps by 1. Equivalent to INC rps
The instruction DEC works the same way.

INR r --
increments register r by 1. Equivalent to INC r
The instruction DER works the same way (equivalent to DEC r).

)INR disp --
increments the byte at address IY+disp by 1. Equivalent to INC (IY+disp)
The instruction)DER works the same way (equivalent to DEC (IY+disp)

RL r --
rotates register r one position to the left. Equivalent to RL r
The instructions RR, RLC, RRC, SRL, SRA and SLA work the same way.

)RL disp --
rotates the byte at address IY+disp one position to the left. Equivalent to RL (IY+disp).
The instructions)RR,)RLC,)RRC,)SRL,)SRA and)SLA work the same way.

BIT b r --
test bit b of register r. Equivalent to BIT b,r
The instructions RES and SET work the same way.

)BIT b disp --
test bit b at address IY+disp. Equivalent to BIT b,(IY+disp).
The instructions)RES and)SET work the same way.

TST rp --
test if register pair rp is zero. B TST expands to the instructions.

44

 LD A,B
 OR A,C

JP addr --
jumps to absolute address addr Equivalent to JP addr.
The instructions JPNZ, JPZ, JPNC, JPC, JPPO, JPPE, JPP, JPM, CALL, JR, JRNZ,
JRZ, JRNC, JRC, DJNZ en RST work the same way. Relative branch instructions (JR etc)
take absolute addresses as inputs, but are assembled with relative branch offsets.
Example: addr JPNZ is equivalent to JP NZ,addr

JPHL --
jumps to the address in HL. Equivalent to JP (HL).
The instruction JPIY works the same way.

CALLC addr cc --
conditional call to address addr. cc is one of the condition codes that can be specified in
lowercase letters as described in 4.6.
Equivalent to CALL cc,addr

RETC cc --
conditional return. cc is specified the same way as in CALLC.
Equivalent to RET cc.

PUSH rpa --
pushes rpa onto the stack. Equivalent to PUSH rpa
The POP instruction works the same way.

PRT --
Call to Forth internal routine to print a character.

IN 8b --
reads accumulator A from port 8b. Equivalent to IN A,(8b)
The OUT instruction works the same way.

INBC r --
reads register r from port in register C. Equivalent to IN r,(C)
The OUTBC instruction works the same way (equivalent to OUT (C),r).

The following instructions have no operands and use the exact same mnemonics as
standard Z80 assembler: NOP, RLCA, RRCA, RLA, RRA, HALT, RET, DAA, CPL, SCF,
CCF, DI, HALT, EXX, LDIR, LDDR, CPIR, IM1, EI, IM2 and NEG.

45

Note that not all Z80 instructions are implemented by this assembler, but the missing
instructions are unlikely to be ever used. They can be added to the assembler if required or
their opcodes can be assembled directly with , or C,

RPTR, UPTR and NEXT are 3 address constants. They denote the address of the return
stack pointer, the address of the user area pointer and the address of the inner interpreter.

4.6 CONTROL STRUCTURES

The assembler can use the IF..THEN, IF..ELSE..THEN, BEGIN..UNTIL and
BEGIN..WHILE..REPEAT control structures from FORTH and they are implemented
with relative jumps. IF, WHILE and UNTIL are preceded by a condition code, which can
be Z, NZ, CS or NC.

BEGIN

..
NC UNTIL

denotes a loop that must repeat until the carry bit is clear. Hence the relative jump
instruction at the end will be JR C.

Further we have BEGIN..AGAIN for an infinite loop and BEGIN..DSZ for a down
counting loop with a DJNZ instruction at the end.

The same control structures, except BEGIN..DSZ can also be used with absolute jumps.
To specify absolute jumps, specify the relevant words in lowercase. Permissible condition
codes are z, cs, pe, m and v (where v is the same as pe). Each of these condition codes
can be followed by NOT to indicate the opposite condition.

The same BEGIN..UNTIL construct specified with absolute jumps will become:

begin

..
cs NOT until

Here are some examples of these structures, conventional Z80 assembler on the left and
the conversion to Z80 Forth assembler on the right:

46

code seg. 1
JR Z,LBL01

code seg. 2
LBL01: code seg. 3

code seg. 1
NZ IF

code seg. 2
THEN
code seg. 3

LBL01: code seg.
DJNZ LBL01

BEGIN

code seg.
DSZ

code seg. 1
JR NC,LBL01
code seg. 2
JR LBL02

LBL01: code seg. 3
LBL02: code seg. 4

code seg.1
CS IF

code seg. 2
ELSE

code seg. 3
THEN
code seg. 4

LBL01: code seg. 1
JR Z,LBL02
code seg. 2
JR LBL01

LBL02: code seg. 3

BEGIN

code seg. 1
NZ WHILE

code seg. 2
REPEAT
code seg. 3

LBL01: code seg. 1
JP C,LBL01

begin

code seg. 1
cs NOT until

47

Chapter 5

48

5 THE DOUBLE NUMBER EXTENSION WORD SET

5.1 INTRODUCTION

The file DOUBLE.BLK (3 screens in size) contains all words required to implement the full
Double Number Extension Word Set and additionally all words necessary to perform all
operations with double precision, including multiplication, division and square root.

Before loading DOUBLE, you must first load the assembler as explained in section 4.2. Then
load RUN DOUBLE.BLK and finally (if applicable) DISPOSE to remove the assembler.

5.2 EXTRA WORDS

2CONSTANT xd -- D
(runtime) -- xd

like CONSTANT, but for a 32-bit value.

2UNDER xd1 xd2 -- xd2
removes the second value from the stack.

2VARIABLE -- D
(runtime) -- addr

like VARIABLE, but for a 32-bit value.

D* d1 d2 -- d3
multiplies d1 with d2.

D/ d1 d2 -- d3
divides d1 by d2.

D/MOD d1 d2 -- d3 d4
divides d1 by d2. d3 is the remainder and d4 the quotient.

D2* d1 -- d2
Multiplies d1 by 2.

D2/ d1 -- d2 D
divides wd1 by 2.

49

D= xd1 xd2 -- f D
f=true if xd1 and xd2 are equal, false otherwise.

D> d1 d2 -- f D
f=true if d1 is greater than d2, false otherwise.

DMAX d1 d2 -- d3 D
d3 is the maximum of d1 and d2.

DMIN d1 d2 ---d3 D
d3 is the minimum of d1 and d2.

DMOD d1 d2 -- d3
d3 is the remainder of the division of d1 by d2.

DU. ud --
like D. but for unsigned number.

DU.R ud u --
like D.R but for unsigned number.

DU< ud1 ud2 -- f D
f=true if unsigned ud1 is less than ud2, false otherwise.

SQRT ud -- u
u is the square root of ud, rounded down.

U.R u1 u2 --
like .R but for unsigned number.

UD/MOD ud1 ud2 -- ud3 ud4
divides ud1 by ud2. ud3 is the remainder and ud4 is the quotient.

50

Chapter 6
51

6 THE FLOATING POINT EXTENSION WORD SET

6.1 INTRODUCTION

With this extension you can use floating point numbers in Forth. These numbers are 32 bits
in size and occupy two entries on the data stack each, hence you can use 2@ and 2! to
read and write floating point numbers in memory and all double precision stack words,
such as 2DUP and 2SWAP, to manipulate them on the stack.

The word NUMBER is extended with a means to process floating point numbers. Now you
can enter floating point numbers from the text interpreter by immediately following a
number (that may or may not contain a decimal point) with an & sign. The & sign can
optionally be followed by a + or - sign and then a small integer that represents the
exponent. The exponent is the power of BASE with which the number must be multiplied.
This way we can enter floating point numbers in scientific notation in any number base.

Examples
2& the number 2
-2.718& the number -2.718
12&+3 the number 12000
-0.041& the number -0.041
-4.1&-2 the number -0.041

The floating point words are contained in two files. The first file, FLOATING.BLK (8 screens in
size) contains the basic operators, words to print floating point numbers, the extension of
NUMBER to allow floating point input and a square root function. The assembler must be
loaded first. This can be loaded with RUN TASM.BLK or RUN ASSEMBL1.BLK.
Then the floating point extension can be loaded with RUN FLOATING.BLK. Finally the
assembler can be removed with DISPOSE, if desired.

The second file TRANSCEN.BLK (size 4 screens) contains trigonometric and logarithmic
functions. This file does not require the assembler, but it does require FLOATING to be
loaded.

If the system is saved (as described in section 2.4) and later reloaded or if it is restarted via
a cold start, the word FLOAT must be executed to re-activate the extension to NUMBER
that allows floating point input.

52

6.2 FORMAT AND PRECISION

A floating point number consists of two parts. The three least significant bytes form the
fractional part (also called mantissa), a 24-bit number between 1 and 2. The leading bit
represents 1, the second bits represents 1/2, the third bit represents 1/4 and so on. As the
leading bit is always 1, this is omitted from the number and this position is used for the sign
of the number (0 for positive, 1 for negative). The most significant byte is the exponent
offset by 128. This represents the power of two (in the range -128..127) with which the
fractional part is multiplied.

The largest negative number (closest to zero) and the smallest positive number both
represent the number zero. The largest positive number and the smallest negative number
represent + or - infinity. These numbers are the result of arithmetic overflow or of illegal
operations.

The floating point numbers have a precision of around 7 decimal digits. The following
number ranges can be represented:

- -3*10**38 .. -3*10**-39
- 0
- +3*10**-39 and 3*10**38

The floating point format is similar to, but not identical to the IEEE-754 single precision
binary floating point format. It does not have subnormal numbers and no NaN as a value
different from infinity. Also the exponent offset is different (127 for IEEE-754, 128 for the
Forth format).

6.3 WORDS FROM FLOATING

The stack notation is the same as in previous chapters, but fp is added to represent a 32-bit
floating point number. Words only used internally (such as assembler labels) are not listed
here.

1& -- fp
The constant 1.

10& -- fp
The constant 10.

2CONSTANT 32b --
(runtime) -- 32b

53

See chapter 8

D->F d -- fp
converts a double precision integer d to a floating point number with the same value
(which cannot be represented exactly for large integers).

F* fp1 fp2 -- fp3
floating point multiplication

F+ fp1 fp2 -- fp3
floating point addition,

F- fp1 fp2 -- fp3
subtracts fp2 from fp1

F->D fp -- d
converts the floating point number fp to a double precision integer, rounding toward
zero.

F. fp --
prints fp in scientific notation using the & symbol as "ten to the power" symbol.

F.R fp n1 n2 --
prints fp right-justified in a field of at least n1 characters wide, inserting spaces to the
left if required. n2 digits are printed after the decimal point. Any number base can be
used.

F/ fp1 fp2 -- fp3
divides fp1 by fp2

F0< fp --- f
f true if fp is less than zero, otherwise false.

F0= fp -- f
f true if fp is equal to zero, otherwise false.

F2* fp1 -- fp2
multiplies fp1 by 2.

F2/ fp1 --- fp2
divides fp1 by 2.

54

F< fp1 fp2 -- f
f is true if fp1 is less than fp2, false otherwise.

F= fp1 fp2 -- f
f is true if fp1 is equal to fp2, false otherwise.

F> fp1 fp2 -- f
f is true if fp1 is greater than fp2, false otherwise.

FABS fp1 -- fp2
fp2 is the absolute value of fp1.

FERRNUM f --
The extension of NUMBER for floating point input. The ERRNUM execute this. Parses
the number as a floating point number and converts to a floating point value if f is true.
If conversion fails, an error is reported.

FI** fp1 n -- fp2
Raises fp1 to the power n. n is an integer.

FLOAT --
Activates the floating point extension to NUMBER. Must be executed after a cold start.

FNEGATE fp1 -- fp2
subtracts fp1 from 0.

FSQRT fp1 -- fp2
computes the square root of fp1.

NAN -- fp
Constant, infinite value.

X! fp1 8b -- fp2
Replaces the exponent byte of fp1 with 8b.

X@ fp -- fp 8b
8b is the exponent byte from fp.

55

6.4 WORDS FROM TRANSCEN

180/PI -- fp
constant, 180 divided by pi.

2, 32b --
appends 32b to the end of the dictionary, 32-bit version of ,

2VARIABLE --
 (runtime) -- addr

See chapter 8.
ATN2 -- fp

Computes the angle in radians relative to the X-axis, represented by the vector
contained in the FX and FY variables.

ATNTAB -- addr
addr is the start address of a table containing the arc-tangents of negative powers of 2.
Used internally by trigonometric computations.

ATNTAB@ u -- fp
fp is the arc-tangent of 2 to the power of -u.

DEG fp1 -- fp2
converts angle fp1 in radians to angle fp2 in degrees.

F** fp1 fp2 -- fp3
raises fp1 to the power fp2. fp1 must be nonnegative. Raising to an integer power with
FI** can have a negative first argument.

F*2** fp1 n -- fp2
divides fp1 by 2 to the power of n.

F10** fp1 -- fp2
computes 10 to the power of fp1.

FARCCOS fp1 -- fp2
computes the arc-cosine of fp1 in radians.

FARCSIN fp1 -- fp2
computes the arc-sine of fp1 in radians.

56

FARCTAN fp1 -- fp2
computes the arc-tangent of fp1 in radians.

FCOS fp1 -- fp2
fp1 is in radians, computes the cosine.

FEXP fp1 -- fp2
raises e to the power of fp1.

FLN fp1 -- fp2
computes the natural logarithm of fp1.

FLOG fp1 -- fp2
computes the base 10 logarithm of fp1.

FSIN fp1 -- fp2
fp1 is in radians, computes the sine.

FTAN fp1 -- fp2
fp1 is in radians, computes the tangent.

FX -- addr
FY -- addr

Two floating point variables containing a vector used by trigonometric computations.

LN10 -- fp
constant, the natural logarithm of 10.

LN2 -- fp
constant, the natural logarithm of 2.

LNTAB -- addr
addr is the start address of a table containing the natural logarithms of 1+2**-i. Used by
logarithmic computations

LNTAB@ u -- fp
fp is the natural logarithm of 1+2**-u

PI -- fp
constant, the number pi.

57

PI/180 -- fp
constant, pi divided by 180.

RAD fp1 -- fp2
converts angle fp1 in degrees to angled fp2 in radians. Required if you want to compute
sine, cosine or tangent of angles expressed in degrees. Example:
To compute the sine of 45 degrees, type:

45& RAD FSIN F.

TAN2 fp --
fp is positive. Creates a vector in the variables FX and FY that has an angle of fp radians
relative to the x-axis.

58

Chapter 7
59

7 THE PRINTER EXTENSION WORD SET

The file PRINTER.BLK adds to the ZX81 Toddy Forth-79 the functionality to redirect print
output to the ZX Printer. Before loading it, you must first load the assembler as explained in
section 4.2

In TF79 the EMIT word is an execution vector that by default executes the word (EMIT).
To redirect the output to the ZX Printer, >P redirect EMIT to execute the new word
PRINT.

The following words are defined by the Printer extension:

>P --
Redirects text output to the printer.

>S --
Directs text output to the screen.

COPYSCR --
Sends a copy of the entire screen to the printer.

LLIST n1 n2 --
Sends the contents of screens n1 to n2 to the printer.

PRINT c --
Sends the character c to the printer.

Type

>P ." HELLO WORLD!" <enter>

Note that after pressing ENTER, all text output will be directed to the printer, including the
"OK". What is being typed will only be printed after pressing the NEWLINE key or when the
printer's buffer is full. Pressing the BREAK key stops printing and performs a WARM restart.

Another interesting feature is that printing uses the font of characters stored at address
15360 (1024 bytes), even taking into account bit 0 of the Z80 I register. This bit determines
whether character generation will be in CHR$64 mode or in CHR$128 mode (which is the
default).

60

Chapter 8
61

8 THE CHROMA-81 EXTENSION WORD SET

The file CHROMA.BLK implements all words necessary for the full support to the Chroma-
81 interface. Before loading it, you must load the assembler as explained early and then
execute RUN CHROMA.BLK.

8.1 THE CHROMA-81 INTERFACE

The Chroma-81 was developed by Paul Farrow to be connected to the expansion bus of the
ZX81, allowing connection to a TV via a SCART connector to provide a sharp and clear RGB
image. It also allows you to add colours to the image generated by the ZX81, supporting
two modes of operation: the Character Colour Mode (Mode 0) and the Attribute Colour
Mode (Mode 1). To use it with the TF79, set switches 3 and 6 in the ON position.

The character Colour Mode allows you to define two colours (a foreground colour and a
background colour) for each scanline of each one of the 128 characters (characters with ZX
codes 0-63 and 128-191). The character colour table is positioned from address 49152
($C000) to address 50175 ($3CFF), 8 bytes for each character.

The attribute Colour Mode uses an attribute area to map the foreground and background
colours for each character screen position, similar to the attributes area of ZX Spectrum.
The attributes area is located from address 49323 ($C0AB) to address 50115 ($C3C3).

It is recommended to read the Chroma-81 documentation for a complete understanding of
its features.

8.2 OPERATING THE CHROMA-81 WITH TF79

After loading the Chroma-81 extension, the first thing to do is vectorize the words EMIT
and PAGE to work with the new features, which is done with the word CHROMA:

1 CHROMA

Then define the mode in which you want to work
with the word CMODE:

1 CMODE (set mode 1)

Now set the screen colours:

15 1 9 COLOR

62

(you can experiment with other values from the list below)

0 Black
1 Blue
2 Red
3 Magenta
4 Green
5 Cyan
6 Yellow
7 White

 8 Bright black
 9 Bright blue
10 Bright red
11 Bright magenta
12 Bright green
13 Bright cyan
14 Bright yellow
15 Bright white

BORDER set screen border colour, INK and PAPER set foreground and background
colours for upcoming screen prints. Try:

: HELLO
 16 0 DO
 CR I INK 15 I - PAPER
 I BORDER
 ."Hello World!" 10 WAIT
 LOOP ;

HELLO

Note: INK and PAPER only work in Mode 1
(Attribute Colour Mode).

For mode 0, the ink and paper attributes of the
word COLOR are applied to the entire character set:

0 CMODE (set mode 0)
12 0 4 COLOR

DEFCOL is used to define the colours for a given character and DEFCHR defines its
shape. Both expect 9 values on the stack, the TOS is the ASCII code of the character and the
others represent each line of the character with the first line corresponding to the leftmost
number. Each colour number in DEFCOL represents the background and foreground
colours and is encoded as paper*16+ink. So, for paper=yellow and ink=bright red, we have
6*16+10=106. The example below defines the colours and a new shape for the '>'
character:

7 7 6 10 6 13 13 15 62 DEFCOL
24 24 18 126 88 24 100 70 62 DEFCHR
EMIT 62

And lastly, to disable Chroma-81 colour features, use

0 CHROMA

63

8.3 THE CHROMA-81 WORD SET

BORDER (n --)
Sets the screen border colour.

CHROMA (f –)
Enable/disable the full colour support for Chroma-81. When f is true, the words EMIT and
PAGE are vectored to cemit and cpage, respectivelly. With f false, EMIT and PAGE
are re-vectored to its default actions (EMIT) and (PAGE), and the colour feature of
Chroma-81 are disabled.

CMODE (f --)
Defines the operating mode of Chroma-81 according to the value of f:

0 - sets the Character Colour Mode (Chroma Mode 0)
1 - sets the Attribute Colour Mode (Chroma Mode 1)

COLOR (ink paper border --)
In mode 0, sets the border colour and applies ink and paper colours to the entire character
set. In mode 1, sets the colours for the entire screen.

DEFCHR (n0 n1 n2 n3 n4 n5 n6 n7 c --)
Defines the shape of a given character c.

DEFCOL (n0 n1 n2 n3 n4 n5 n6 n7 c --)
Defines the paper and ink colours for each scanline (n0 to n7) of a given character c. The
colour are coded as paper*16+ink.

INK (n --)
Sets the foreground colour for the next characters to be sent to the screen.

PAPER (n --)
Sets the background colour for the next characters to be sent to the screen.

cemit (c --)
Sent the character c to the screen updating the colours attributes. It’s assigned to EMIT
by 1 CHROMA.

cpage (--)
Clear the screen updating the colours attributes. It’s assigned to PAGE by 1 CHROMA.

64

Chapter 9
65

9 THE HIRES GRAPHICS EXTENSION WORD SET

The file HGR.BLK (8 screens) contains all words required to implement a full high resolution
graphic display with 256x192 pixels. It also offers a fully functional graphic terminal that can
completely replace the standard text terminal.

Before loading the extension, you must first load the assembler as explained in section 4.2.
Then execute RUN HGR.BLK and finally (if applicable) DISPOSE to remove the
assembler.

9.1 THE GRAPHIC SCREEN

The graphic screen occupies 6144 bytes and is located at address 32768 (8000h), therefore
overwriting the RAM disk area. If you have disponible more RAM (with Chroma-81 for
example) you can move the high-resolution screen to an address with an alignment of 8192
bytes (A000h, C000h or E000h are the options), just edit the value of the constant hfile
on screen 1 at HGR.BLK.

The graphic screen has a resolution of 256x192 pixels, with the coordinate (0,0) located at
the bottom left of the screen, and the coordinate (255,191) at the top right. The graphic
words accept coordinates beyond the limits of the screen, pixels outside the range are
simply ignored. For text printing, the screen follows the same pattern as the standard
terminal, 24 rows by 32 columns with row 0 at the top of the screen.

The graphical display can be manipulated from the text terminal or by activating the
graphical terminal with the word HTERM. The advantage of the first mode is that the
graphic screen is not polluted with the given commands. In the next sections we will see
how to use both modes.

9.2 THE TEXT TERMINAL

It's the default terminal we've been using so far, there's not much to add so let's get
straight to practical examples:

GPAGE HGR 1 GPEN 0 0 GSET 255 191 GLINE

GPAGE clears the HR screen, HGR activates it, GPEN sets the action of graphics
commands (set pixel in this case), GSET sets the pixel at coordinate (0,0) and GLINE
draws a line from the last coordinate to the point located 255 pixels to the right and 191
pixels above.

66

Type TEXT to return to the default terminal (you won't see what you're typing as the
default text output is still the text screen).

Now for a more elaborate example, enter the following definition (or load the GCIRCLE.BLK
from SCREENS directory):

\ MIDPOINT CIRCLE ALGORITHM

VALUE X VALUE Y
VALUE X1 VALUE Y1
VALUE P VALUE PY VALUE PXY

: GCIRCLE (x y r --)
 TO X1 TO Y TO X
 0 TO P 0 TO Y1
 BEGIN X1 Y1 < NOT WHILE
 P Y1 2* + 1+ TO PY
 PY X1 2* - 1+ TO PXY
 X X1 + Y Y1 + GSET
 X X1 - Y Y1 + GSET
 X X1 + Y Y1 - GSET
 X X1 - Y Y1 - GSET
 X Y1 + Y X1 + GSET
 X Y1 - Y X1 + GSET
 X Y1 + Y X1 - GSET
 X Y1 - Y X1 - GSET
 PY TO P 1 +TO Y1
 PXY ABS PY ABS < IF
 PXY TO P -1 +TO X1 THEN
 REPEAT ;

Then type in direct mode:

GPAGE 0 0 GSET

255 0 GLINE 0 191 GLINE

-255 0 GLINE 0 -191 GLINE

20 95 GSET

107 -75 GLINE 107 75 GLINE

-107 75 GLINE -107 -75 GLINE

127 95 45 GCIRCLE HGR

Cool, isn’t it? ;-)

Finally, an example with GLINETO:

: GODSEYE (--)
 76 0 DO 75 I -
 128 OVER 2* - 96 GSET
 128 OVER 24 + GLINETO
 128 OVER 2* + 96 GLINETO
 128 I 96 + GLINETO
 128 OVER 2* - 96 GLINETO
 DROP 3 +LOOP ;

HGR GPAGE GODSEYE

9.3 THE GRAPHIC TERMINAL

The graphic terminal is one of the most exciting features implemented by the HGR
extension and once activated, the EMIT, AT, PAGE and SLOW actions will take place on

67

the graphic screen, using the character font stored at 15360. Therefore, it is an excellent
option for who do not have available hardware for character redefinition.

To activate the graphical terminal, simply type HTERM, and if necessary, PAGE to clear the
screen. The HGR screen with traditional blinking cursor will be presented and you will be
able to act in exactly the same way as in the text terminal. Try typing VLIST and you will
see that the response will be the same as the one obtained in the standard terminal,
although a little slower (remember, each character is 8 bytes transferred to the screen and
the scroll moves 6144 bytes against only 793 of the text screen).

Everything that can be done in the standard terminal can also be done in the graphical
terminal, but there are some precautions to be taken:

- Words that switch to FAST mode (BLOAD, BSAVE, FLOAD, FSAVE, GET, PUT, etc)
do not automatically return to the graphic screen, requiring the use of SLOW or HGR
after use.

- The word KEY also loses access to the screen if used in FAST mode but don't despair,
just type SLOW or HGR to return.

- It’s possible to use the Editor, but only screens 7 and 9 will be available for editing. It’s
still possible to use the entire RAM disk to load screens from SD card with the words
GET or RUN, the side effect is that the graphic screen will be polluted (nothing that a
later PAGE won't solve).

- The PRINTER EXTENSION can also be used with the graphical terminal, but you will
need to execute HTERM after use to return to the HR screen. If you prefer, redefine the
>S word at PRINTER.BLK file:

: >S HTERM ;

- COLD returns to text screens but EMIT, PAGE, AT and SLOW continue to acting on
the graphic display. Again, use HGR or SLOW to return to the HR screen.

Another nice feature is that the word INVERSE presented in section 1.4.2 also works
here and without the restrictions presented previously. Try:

CHARS INVERSE CHARS INVERSE

(The CHARS definition was presented in section
1.4.1)

68

9.4 ADDING SOME COLOURS

For those who have a Chroma-81, the words defined below allow you to add up to three
different colours to the graphic terminal: border colour, background colour and foreground
colour.

: BORDER (n --)
 48 + 32751 P! ;

: COLOR (n1 n2 --)
 16 * + 32751 P@ 32 AND NOT IF
 [coords 32774 + DUP 32 +]
 LITERAL LITERAL DO DUP I C!
 LOOP THEN DROP ;

BORDER expects a number n in the stack that corresponds to the colour number. So, to
set the green colour for the screen border we must enter 4 BORDER. This set the colour
border and also set the Chroma-81 to colour attibute mode. To disable the colour feature
use 0 32751 P!.

COLOR expects two numbers on the stack, n1 and n2 that correspond to the foreground
colour (ink) and background colour (paper), respectively. Thus, 7 1 COLOR will assign
the colours white to ink and blue to paper.

See the list of colours codes in chapter 8.

Note: See an example of using BORDER and COLOR in file COMPART.BLK available in the
SCREENS folder.

69

9.5 THE HGR WORDS

(SLOW) (--)
Standard slow routine.

GINVERT (--)
Invert the graphic screen.

GLINE (dx dy --)
Draw a straight line from the last point, across dx pixels to the right, and up dy pixels. Either
dx or dy can be negative, producing lines going left and down.

GLINETO (x y --)
An alternative to GLINE, with this word you specify the destination coordinates of the
line, which is drawn to there from the last point.

GMOVE (x y --)
Change the "last point" coordinates to (x,y), without affecting the pixel.

GPAGE (--)
Clear the graphic screen.

GPEN (n --)
Set the behavior of GSET, GLINE and GLINETO:

n = 0 --> clear the pixel
n = 1 --> set the pixel
n = 2 --> invert the pixel

GPOS? (-- x y)
Get the coordinates of the last point referred to by any other graphics word.

GSET (x y --)
Changes the point with the coordinates (x,y) according to the condition defined by GPEN.

GSET? (x y -- flag)
Give a true flag if the point with coordinates (x,y) is set.

HGR (--)
Switches to the HR graphic screen.

70

HTERM (--)
Activates the graphic terminal and redirects the actions of SLOW, AT, EMIT and PAGE
to the high resolution screen.

SLOW (--)
An execution vector, executes (SLOW) when in the standard terminal or hslow when in
the graphical terminal.

TERM (--)
Returns to standard terminal restoring the default actions of SLOW, AT, EMIT and PAGE.

TEXT (--)
Switches to the normal text screen.

coords (-- addr)
Leaves the address of the memory location where the coordinates of the last manipulated
pixel are stored. Y coordinate in addr, X coordinate in addr+2, 2 bytes for each ones.

hat (n1 n2 --)
Sets the print position on the graphic screen for row n1 and column n2.

hemit (c --)
Transmit character c to the graphic terminal.

hfile (-- addr)
Leaves the address of the HGR screen.

hslow (--)
HR slow routine.

71

Chapter 10
72

10 MULTI-TASKING SUPPORT

One of the most interesting new features in TF79 1.13 is support for multi-tasking
programming, although this is nothing new in the Forth world. Here was adopted a model
closely based on that used by Pygmy Forth/Z88 Camel Forth.

The file MULTI.BLK contains all words required to implement the Muti-tasking environment.
Before loading it, you must first load the assembler as explained in section 4.2. Then
execute RUN MULTI.BLK and finally (if applicable) DISPOSE to remove the
assembler.

The instructions below are largely taken from the Z88 Camel Forth v3.00 documentation
and adapted accordingly for the TF79.

10.1 THE MULTI-TASKING ENVIRONMENT

TF79 starts up in single-tasking mode; in this mode a single task (the terminal task) is
running, and the task-switching word PAUSE is vectored to NOOP so that no time is
wasted "switching" to the next task.

In multi-tasking mode, PAUSE causes the currently active task to switch control to the
next "awake" task in the circular list. You can either use PAUSE specifically, or rely on one
of the following words, which invoke it:

- KEY - every keyboard scan loop
- WAIT - every 20ms

Only the terminal task should accept input from the keyboard or load other sources. All
data areas are shared between tasks (such as PAD, block buffers etc) so if you need to use
these areas in more than one task, ensure that you save/restore them as required before
and after each possible task switch. Each task has its own stacks and BASE settings;
everything else is shared.

10.2 DEFINING AND RUNNING TASKS

The first thing you need to do is define your tasks with TASK:. Each task requires 266
bytes of RAM to hold its stacks and user variables. Since tasks can be set to run any word at
any time, you only need to define as many as you will be running at once (excluding the
terminal task, of course). For example, define a task called A:

TASK: A

73

Executing A returns a unique task ID, which is an argument or result for most of the
remaining multiprogramming words.

Next set the task to run a particular word with TASK!. Normally this will contain an
infinite loop with PAUSE at some strategic position. As an example:

: TEST BEGIN BELL PAUSE AGAIN ;
' TEST A TASK!

Finally, you can enable multi-tasking with MULTI and set the task running by WAKEing it:

MULTI
A WAKE

10.3 CONTROLLING TASKS

You can disable multi-tasking at any point with SINGLE, which has the effect of locking
the system into the currently running task. All tasks previously "awake" are still awake, and
will start running again as soon as multi-tasking is re-enabled with MULTI.

Any task (except the terminal task) can be stopped with SLEEP. For example, to halt task
A, do:

A SLEEP

It's possible to re-WAKE the task, or use TASK! first to set it to run a new word. It's
perfectly safe to use WAKE on an already awake task, or SLEEP on an inactive task;
however if you attempt to use TASK! on an active task, a crash could occur.

If you wish a task only to run for a specified time, include the word STOP somewhere in
the word it runs; this will send the current task to sleep and switch to the next.

Finally, you may use PURGE to deactivate all running tasks.

10.4 MULTI-TASKING DEMO

As a test, set up two tasks, each of which increments an associated counter. One
increments its counter every 40ms and the other once every 400ms.

VARIABLE C1 VARIABLE C2

TASK: T1 TASK: T2

74

: TST1 BEGIN 2 WAIT (40 ms) 1 C1 +! AGAIN ;

: TST2 BEGIN 20 WAIT (400 ms) 1 C2 +! AGAIN ;

' TST1 T1 TASK!
' TST2 T2 TASK!

T1 WAKE T2 WAKE MULTI

Ocassionally check the counter values, e.g.

C1 ?
C2 ?
C1 ?
C2 ?

 etc.

Then, as an additional test, set up two more tasks that merely display the values of the
counters the tasks on the previous block are incrementing:

TASK: T3 TASK: T4

: CUR@ 16398 @ ;
: CUR! 16398 ! ;

: TST3 BEGIN 1 WAIT (20 ms) CUR@ 0 26 AT
 C1 @ 6 .R CUR! AGAIN ;

: TST4 BEGIN 1 WAIT (20 ms) CUR@ 2 26 AT
 C2 @ 6 .R CUR! AGAIN ;

' TST3 T3 TASK!
' TST4 T4 TASK!

T3 WAKE T4 WAKE

Notice how the cursor address in the terminal task is preserved in TST3 and in TST4.

10.5 THE WORDS OF MULTI

#TASKS (-- addr)
A variable containing the number of tasks currently active.

(PAUSE) (--)
Switch to next task

75

AWAKE? (task -- task'|0)
Returns 0 if the task specified is inactive; if it is active, the task ID of the previous task in the
chain is returned.

LINK (-- task)
Returns the ID of the currently running task. This ID is actually the address of a variable
containing the ID of the next task in the chain.

MULTI (--)
Enable multitasking.

MULTI-ABORT (--)
Special version of ABORT so that a non-TERMINAL task will put itself to sleep (with STOP)
rather than doing QUIT.

PURGE (--)
Kill all processes and ret to TERM.

SINGLE (--)
Disable multitasking.

SLEEP (task --)
Remove task from chain unless TERM.

STOP (--)
Puts current task to sleep.

TASK! (addr task --)
Set up a task ready to WAKE.

TASK: ("name" --)
Create a new task.

TERM (-- task)
Returns the ID of the terminal task.

WAKE (task --)
Inserts task into chain

76

Chapter 11
77

11 INSIDE THE COMPILER

11.1 THE INNER INTERPRETER

The inner interpreter adopts Direct Threaded Code (DTC), which means it jumps directly to
the addresses contained in a colon definition. Therefore, the Code Field of each Forth word
contains machine instructions. For code definitions these are the machine instructions for
the code definition. For constants, variables, colon definitions, and user variables, Code
Field contains a subroutine call to the appropriate runtime routine (DOCON for constants,
DOCREATE for variables, DOCOLON for colon definitions, DODOES for DOES> clause and
DOUSER for user variables). For CREATE DOES> words the Code Field contains a
subroutine call to the address directly after (;CODE) in the defining word. A subroutine
call to DODOES is compiled at this address. The first call puts the Parameter Field on the
stack, the second call starts execution of the DOES> part of the defining word as a colon
definition.

In all cases, the CALL statement causes the Parameter Field to be pushed onto the stack,
making it readily available to the handler routine (DOCON, DOCOLON, DODOES, DOUSER),
or just leaving it there in case of variables.

Each code definition ends with a jump to the NEXT routine, made with the JP (IY)
instruction (for the most important Forth routines, NEXT is built inline instead of having a
jumper for it), where the address of the next routine is always stored in the IY register. The
NEXT routine is the internal interpreter itself. It reads the address of the next word to be
executed (pointed by the instruction pointer, which is incremented) and jumps to it.

The NEXT routine consists of 7 instructions, as follows:

NEXT:
EX DE,HL ; Store instruction pointer in HL
LD E,(HL) ; Read next address, low byte
INC HL
LD D,(HL) ; Read next address, upper byte
INC HL
EX DE,HL ; Put instruction pointer in DE, jump address in HL
JP (HL) ; Jump to run address

• The item on top of the data stack (TOS) is stored in BC
• The Work register (W) is HL
• Instruction pointer (IP) is DE
• FORTH data stack pointer (PSP) is SP
• The NEXT address is stored in IY

78

• Return stack pointer (RSP) is stored at address 402BH
• User area pointer (UP) is stored at address 400AH
• The X register is not used in this implementation. It is normally used to access the

Parameter Field of the word being executed, but this is pushed on stack by CALL
instruction in Code Field.

As with most systems, both the data stack and the return stack grow downwards.
Whenever we refer to the top of the stack, it means the lowest memory address and the
bottom of the stack is the highest memory address.

11.2 HEADER STRUCTURE

Words in TF79 are composed of four fields, they are:

• Link Field: points to the Name Field of the previous word in the dictionary.
In the first word, this field contains 0. The size is always 2 bytes.

• Name Field:
First byte:

bit 7: always 1
bit 6: Precedence bit, set if it is an immediate word
bit 5: Smudge bit, set if word is not to be found
bit 4..0: name length

The following bytes contain the characters of the name.
• Code Field: 3-byte call instruction.
• Parameter Field: contains all additional information used by the word, for

example, the value stored in a variable, the list of execution addresses in a
definition of two points.

link

1 P S lenght

name

cfa/pfa

Note:
Code definitions do not have a separate code field and parameter field. Machine
instructions start at the Code Field address and the code definition contains as many
bytes of machine code as needed. Execution vectors words are code definitions.

79

FIND and ' always return the Code Field address, which is the same as the compilation
address.

>NFA converts Code Field address to Name Field address
>PFA converts Code Field address to Parameter Field address
>CFA converts Name Field address to Code Field address

11.3 MEMORY MAP

The TF79 requires the use of the ZXpand interface with the RAM memory mapped in the
8K-40K range. For this configuration the memory usage is as follows (addresses in decimal):

Note: TF79 is completely independent of the BASIC interpreter, so some BASIC system
variables have been replaced by Forth variables.

 8192: Forth kernel
15360: Character definition table
16384: BASIC and Forth system variables:

16391: RSP - Return stack pointer
16394: UP - user area pointer
16396: DFILE - screen address
16398: CURADD - screen cursor address
16400: LKEY - last key read
16401: REP - Key repeat counter
16402: HCURADD - Cursor address on HR screen
16417: FTFLAGS - Flags of the Forth: CFxxSKxA

C = cursor on/off, 1=on
F = Fast mode flag
S = Stop on/off
K = caps lock flag
A = attribute color mode, 1=active
x = flag not used

16418: CMBDR - Chroma color mode and border color

16419: ATTR - color attributes for ink and paper

80

7 6 5 4 3 2 1 0

 Border color code

 Mode (0=Character code, 1=Attribute file).

 1=Enable color mode.

 Reserved for future use (always set to 0).

16430: INVCHR - character inversion flag
16431: CTIMER - timer for blinking cursor
16444: PRTBUF

USER AREA:
Per task variables:

16477: LINK
16479: ‘SP
16481: S0
16483: R0
16485: BASE

Global variables:
16487: DP
16489: FENCE
16491: STATE
16493: >IN
16495: HLD
16497: VOC-LINK
16499: CONTEXT
16501: CURRENT
16503: DPL
16505: BLK
16507: SCR

16509: BASIC lines to load the Forth kernel
1 CONFIG "M=L"
2 LOAD "TF79.BIN;8192"
3 RAND USR 0

16555: Screen File (D-File)
17350: The FORTH word
17371: User dictionary starts here
31217: End of dictionary
31485: Start of Terminal Input Buffer (TIB, 128 bytes) and botton of data stack (S0), which

grows downwards and has 256 bytes in size. For safety, there is a gap of 12 bytes
between the data stack and the end of the dictionary.

31741: Botton of return stack (R0), grows towards TIB and is 128 bytes.
31743: Block buffer and its markup (which screen is contained in it).
32768: Start of RAM disk, 8192 bytes
40959: Last RAM position

81

11.4 CHANGING THE MEMORY MAP

The default memory map can be modified as needed by changing the value of RAMTOP
and #SCR and restarting Forth. For example, if you need more 2Kb of RAM for the
dictionary, you can adjust the value of RAMTOP to address 34816, modify the content of
the constant #SCR to reflect the new RAM disk capacity and finally run COLD to restart
Forth:

34816 16388 ! 6 TO #SCR COLD

Consequently, the locations of TIB, the data stack, the return stacks, and the block buffer
will also change. COLD always sets the variable LO (the RAM disk start address) to the
address given by RAMTOP.

By attaching a Chroma 81 interface to the system, you gain more flexibility in memory
usage. In this case, you can transfer the RAM disk to the memory at address 49152 leaving
the 8 Kb at 32768 for the dictionary or another purpose:

40960 16388 ! COLD 49152 LO !

82

In this case it would not be necessary to change the content of #SCR as the RAM disk does
not change its original capacity of 8 screens. But if you are going to use the Editor in FILE
mode, then it is necessary to update the variable DRLIM to point to the first position after
the RAM disk:

57344 DRLIM !

There are no restrictions on colon definitions created above address 32767, but code
definitions in this area of memory should be avoided, as only a limited number of machine
instructions are allowed there. The use of a prohibited machine instruction will fatally cause
the system to crash.

One last reminder: if you save a program whose dictionary exceeds address 32767, you
must change RAMTOP to the appropriate value before loading it from BASIC.

83

Appendix A
84

APPENDIX A - THE IMPLEMENTED WORD SETS

A.1 THE STACK NOTATION

The words in the list are in ASCII order and the word name is followed by any value that the
word expects on the stack, followed by two hyphens, followed by any value that is returned
on the stack.

After these, one or more capitalized symbols that indicate the word attribute can be
followed:

F79 The word is part of the Forth-79 Required Word Set
R The word is part of the Forth-79 Reference Word Set
D The word is part of the Forth-79 Double Number Word Set (not fully implemented)
C The word may only be used during compilation of a colon definition.
I Indicates that the word is IMMEDIATE and will execute during compilation, unless

special action is taken.
U A user variable.

The values in the stack (expected and returned) are represented as follows:

addr a memory address
b a value representing an 8 bit byte
c a value representing an 8 bit ASCII character code
d 32 bit signed 'double' number {-2,147,483,648..2,147,483,647}
f a numerical value with two logical states; 0 = false, non-zero = true.
n 16 bit signed integer number {-32,768..32,767}
u 16 bit unsigned integer number {0..65535}
ud 32 bit unsigned integer number {0..4,294,967,295}
x any cell value

A.2 DEFINITION OF TERMS:

buffer: buffer of 1024 bytes that contains the screen that is currently accessed. This FORTH
system contains a single block buffer. Screens are moved between the block buffer and the
RAM disk.

colon-definition: FORTH word whose definition was started by ':'. When the colon
definition is executed, the inner interpreter executes the words contained in the colon

85

definition in succession. The address from which the colon definition was invoked gets
stored on the return stack.

compilation: building a colon definition by adding compilation addresses and literals to the
dictionary and by executing immediate words.

compilation address: the address of a FORTH word that will be added to the dictionary
during compilation.

counted string: string of ASCII characters stored in memory, preceded by a single byte
containing the length of the string.

dictionary: collection of vocabularies, which contains all FORTH words. The dictionary
occupies a contiguous memory area, which is extended or reduced in size from the top end.

immediate word: FORTH word that is always executed, even if the text interpreter is in
compilation state.

inner interpreter: piece of machine code that executes the words contained in a colon
definition.

input buffer: buffer containing the line that is typed on the keyboard.

input stream: text read by the text interpreter, either from the input buffer or from a block
buffer.

interpretation: looking up words from the input stream in the dictionary and immediately
executing them. When a word is not found in the dictionary, an attempt is made to convert
it to a number and the resulting value is pushed on the stack if this succeeds.

literal: a special word within a colon definition that, when executed, pushes the value
immediately following it on the stack.

loop: repetition structure used within a colon definition, using a terminal value (limit) and a
counter (index) that are both stored on the return stack.

numeric conversion: conversion of a number from internal binary representation to a string
of ASCII characters representing the number in human readable form.

return stack: LIFO (last in first out) stack containing return addresses of colon definitions, as
well as other values, such as loop counters and limits.

86

runtime part: word that is added to colon definition by an immediate word during
compilation. When the colon definition is executed, the run time part will be executed.

screen: block of 1024 bytes usually containing FORTH source program text. The screens are
stored in a RAM disk

stack: LIFO (last in first out) data stack central to the operation of FORTH, on which values
are passed between words.

text interpreter: FORTH word that reads words from the input stream and interprets or
compiles them, depending on the STATE variable.

user variable: Variable stored in a memory area whose start address can be changed. With
multi tasking, each task has its own version of the user variables.

vocabulary: list of FORTH words.

A.3 WORDS IN FORTH VOCABULARY

! n addr -- F79,112 "store"
Store n at addr.

ud1 -- ud2 F79,158 "sharp"
Generate from an unsigned double number d1, the next ASCII character which is placed
in an output string. Result d2 is the quotient after division by BASE is maintained for
further processing. Used between <# and #>.

#> d -- addr n F79,190 "sharp-greater"
End pictured numeric output conversion. Drop d, leaving the text address, and
character count, suitable for TYPE.

#S ud -- 0 0 F79,209 "sharp-s"
Convert all digits of an unsigned 32-bit number ud, adding each to the pictured numeric
output text, until remainder is zero. A single zero is added to the output string if the
number was initially zero. Use only between <# and #>.

#SCR -- n
Returns the number of screens in RAM disk.

87

' -- addr F79,I,171 "tick"
Used in the form:

' <name>
If executing, leave the code field address of the next word accepted from the input
stream. If compiling, compile this address as a literal; later execution will place this
value on the stack. An error condition exists if not found after a search of the
CONTEXT and FORTH vocabularies. Within a colon-definition ' <name> is identical to
[' <name>] LITERAL.

(-- F79,I,122 "paren"
Used in the form:

(ccc)
Accept and ignore comment characters from the input stream, until the next right
parenthesis. As a word, the left parenthesis must be followed by one blank. It may
freely be used while executing or compiling. An error condition exists if the input
stream is exhausted before the right parenthesis.

(‘) -- addr
Reads word from input stream, looks it up in the dictionary and returns the
compilation address or error message if the word is not found. Used in definition of
‘ .

(;CODE) --
Runtime part of DOES> Can only occur in a colon definition. When executed, the colon
definition is exited and the address following (;CODE) is put in the code field of the
last created definition.

(EMIT) c --
Default code executed by EMIT.

(ERRNUM) f --
Default code executed by ERRNUM.

* n1 n2 -- n3 F79,138 "times"
Leave the arithmetic product of n1 times n2.

*/ n1 n2 n3 -- n4 F79,220 "times-divide"
Multiply n1 by n2, divide the result by n3 and leave the quotient n4. n4 is rounded
toward zero. The product of n1 times n2 is maintained as an intermediate 32-bit value
for greater precision than the otherwise equivalent sequence: n1 n2 * n3 /

88

*/MOD n1 n2 n3 -- n4 n5 F79,192 "times-divide-mod"
Multiply n1 by n2, divide the result by n3 and leave the remainder n4 and quotient n5.
A 32-bit intermediate product is used as for */ . The remainder has the same sign as
n1.

+ n1 n2 -- n3 F79,121 "plus"
Leave the arithmetic sum of n1 plus n2.

+! n addr -- F79,157 "plus-store"
Add n to the 16-bit value at the address, by the convention given for + .

+- n1 n2 -- n3
Negate n1 if n2 is negative, leaving the result as n3.

+LOOP n -- F79,I,C,141 "plus-loop"
Add the signed increment n to the loop index using the convention for + and compare
the total to the limit. Return execution to the corresponding DO until the new index is
equal to or greater than the limit (n>0), or until the new index is less than the limit
(n<0). Upon the exiting from the loop, discard the loop control parameters, continuing
execution ahead. Index and limit are signed integers in the range {-32,768..32,767}.

+TO n --
Add n to the value at the parameter field of <name>. Executed in the form:

n +TO <name>

, n -- F79,143 "comma"
Allot two bytes in the dictionary, storing n there.

- n1 n2 -- n3 F79,134 "minus"
Subtract n2 from n1 and leave the difference n3.

--> F79,R,I,131 "next-block"
Continue interpretation on the next sequential block. May be used within a colon
definition that crosses a block boundary.

-ROT n1 n2 n3 -- n3 n1 n2
Moves the top of stack to the third position.

89

-TRAILING addr n1 -- addr n2 F79,148 "dash-trailing"
Adjust the character count n1 of a text string beginning at addr to exclude trailing
blanks, i.e., the characters at addr+n2 to addr+n1-1 are blanks. An error condition exists
if n1 is negative.

. n -- F79,193 "dot"
Display n converted according to BASE in a free field format with one trailing blank.
Display only a negative sign.

." F79,I,133 "dot-quote"
Interpreted or used in the form:

." ccc"
Accept the following text from the input stream, terminated by " (double-quote). If
executing, transmit this text to the selected output device. If compiling compile so that
later execution will transmit the text to the selected output device. At least 127
characters are allowed in the text. If the input stream is exhausted before the
terminating double-quote, an error condition exists.

.R n1 n2 -- F79,R "dot-r"
Print n1 right aligned in a field of n2 characters, according to BASE. If n2 is less than 1,
no leading blanks are supplied.

/ n1 n2 -- n3 F79,178 "divide"
Divide n1 by n2 and leave the quotient n3. n3 is rounded toward zero.

/MOD n1 n2 -- n3 n4 F79,198 "divide-mod"
Divide n1 by n2 and leave the remainder n3 and quotient n4. n3 has the same sign as
n1.

0 -- 0
Constant 0

0< n -- f F79,144 "zero-less"
True if n is less than zero (negative)

0= n -- f F79,180 "zero-equals"
True if n is zero.

0> n -- f F79,118 "zero-greater"
True if n is greater than zero.

90

1 -- 1
Constant 1

1+ n -- n+1 F79,107 "one-plus"
Increment n by one, according to the operation of + .

1- n -- n-1 F79,105 "one-minus"
Decrement n by one, according to the operation of - .

2 -- 2
Constant 2

2! d addr – F79,D "two-store"
Store d in 4 consecutive bytes beginning at addr, as for a double number.

2* n1 -- n2 F79,R "two-times"
Leave 2*(n1).

2+ n -- n+2 F79,135 "two-plus"
Increment n by two, according to the operation of + .

2- n -- n-1 F79,129 "two-minus"
Decrement n by two, according to the operation of - .

2/ n1 -- n2 F79,R "two-divide"
Leave (n1)/2.

2@ addr -- d F79,D "two-fetch"
Leave on the stack the contents of the four consecutive bytes beginning at addr, as for a
double number.

2DROP d -- F79,D "two-drop"
Drop the top double number on the stack.

2DUP d -- d d F79,D "two-dupe"
Duplicate the top double number on the stack.

2OVER d1 d2 -- d1 d2 d1 F79,D "two-over"
Leave a copy of the second double number on the stack.

91

2SWAP d1 d2 -- d2 d1 F79,D "two-swap"
Exchange the top two double numbers on the stack.

3 -- 3
Constant 3

79-STANDARD F79,119
Execute assuring that a FORTH-79 Standard system is available, otherwise an error
condition exists.

: F79,116 "colon"
A defining word executed in the form:

: <name> ... ;
Select the CONTEXT vocabulary to be identical to CURRENT. Create a dictionary
entry for <name> in CURRENT, and set compile mode. Words thus defined are called
'colon-definitions'. The compilation addresses of subsequent words from the input
stream which are not immediate words are stored in the dictionary to be executed
when <name> is later executed. IMMEDIATE words are executed as encountered.
If a word is not found after a search of the CONTEXT and FORTH vocabularies,
conversion and compilation of a literal number is attempted, with regard to the current
BASE; that failing, an error condition exists .

; F79,I,C,196 "semi-colon"
Terminate a colon definition and stop compilation. If compiling from mass storage and
the input stream is exhausted before encountering ; an error condition exists.

< n1 n2 -- f F79,139 "less-than"
True if n1 is less than n2.

<# F79,169 "less-sharp"
Initialize pictured numeric output. The words:

#> #S <# HOLD SIGN

can be used to specify the conversion of a double-precision number into an ASCII
character string stored in right-to-left order.

<CMOVE addr1 addr2 n -- F79,R "reverse-c-move"
Copy n bytes beginning at addr1 to addr2. The move proceeds within the bytes from
high memory toward low memory.

= n1 n2 -- f F79,173 "equals"
True if n1 is equal to n2.

92

> n1 n2 -- f F79,102 "greater-than"
True if n1 is greater than n2.

>CFA nfa -- cfa
Convert the name field address of a definition to its code field address.

>IN -- addr F79,U,201 "to-in"
Leave the address of a variable which contains the present character offset within the
input stream {{0..1023}}
See: WORD (." FIND

>NFA cfa -- nfa
Convert the code field address of a definition to its name field address.

>PFA cfa -- pfa
Convert the code field address of a definition to its parameter field.

>R n -- F79,C,200 "to-r"
Transfer n to the return stack. Every >R must be balanced by a R> in the same control
structure nesting level of a colon-definition.

? addr -- F79,194 "question-mark"
Display the number at address, using the format of "." .

?DUP n -- n (n) F79,184 "query-dupe"
Duplicate n if it is non-zero.

?TERMINAL -- f
Perform a test of the terminal keyboard for actuation of the break key. A true flag
indicates actuation.

@ addr -- n F79,199 "fetch"
Leave on the stack the number contained at addr.

ABORT F79,101
Clear the data and return stacks, setting execution mode. Return control to the
terminal.

ABORT" f -- F79,R,I,C "abort-quote"
Used in a colon-definition in the form:

ABORT" stack empty"

93

If the flag is true, print the following text, till " Then execute ABORT.

ABS n1 -- n1 F79,108 "absolute"
Leave the absolute value of a number.

ADDR n1 -- addr
Returns the address of screen n in the RAM disk.

AGAIN F79,R,I,C,114
Effect an unconditional jump back to the start of a BEGIN-AGAIN loop.

ALLOT n -- F79,154
Add n bytes to the parameter field of the most recently defined word.

AND n1 n2 – n3 F79,183
Leave the bitwise logical 'and' of n1 and n2.

ASCII -- c (executing) F79,R,I,C
-- (compiling)

Leave the ASCII character value of the next non-blank character in the input stream. If
compiling, compile it as a literal, which will be later left when executed.

AT u1 u2 --
Positions the cursor at line u1 and column u2. 0 0 AT is the topmost line and the
leftmost column.

B/BUF -- 1024 F79,R "bytes-per-buffer"
A constant leaving 1024, the number of bytes per block buffer.

B/SCR -- 1
Constant, the number of block buffers per screen.

BASE -- addr F79,U,115
Leave the address of a variable containing the current input-output numeric conversion
base. {{2..70}}

BEGIN F79,I,C,147
Used in a colon-definition in the form:

BEGIN ... flag UNTIL or
BEGIN ... flag WHILE ... REPEAT

94

BEGIN marks the start of a word sequence for repetitive execution. A BEGIN-
UNTIL loop will be repeated until flag is true. A BEGIN-WHILE-REPEAT loop will
be repeated until flag is false. The words after UNTIL or REPEAT will be executed
when either loop is finished. flag is always dropped after being tested.

BELL F79,R
Outputs a 1316Hz sound with a duration of 40ms.

BL -- n F79,R,176 "b-l"
Leave the ASCII character value for space (decimal 32).

BLK -- addr F79,U,132 "b-l-k"
Leave the address of a variable containing the number of the mass storage block being
interpreted as the input stream. If the content is zero, the input stream is taken from
the terminal.

BLANKS addr n -- F79,R,152
Fill an area of memory over n bytes with the value for ASCII blank, starting at addr. If n
is less than or equal to zero, take no action.

BLOCK n -- addr F79,191
Causes screen n to be loaded into the block buffer and returns the address of that block
buffer. Any screen contained in the block buffer that has been changed, will be copied
back to the RAM disk first.

BLOAD addr --
Reads a word from the input stream and reads the file with that name from mass
storage into the RAM at address addr.

BSAVE addr u --
Reads a word from the input stream and saves u bytes from address addr to mass
storage.

BUFFER n -- addr F79,130
Creates an empty block buffer for screen n (without reading it from the RAM disk) and
returns its address.

C! n addr -- F79,219 "c-store"
Store the least significant 8-bits of n at addr.

95

C, n -- F79,R "c-comma"
Store the low-order 8 bits of n at the next byte in the dictionary, advancing the
dictionary pointer.

C/L -- u
Returns the number of characters per line.

C@ addr -- b F79,156 "c-fetch"
Leave on the stack the contents of the byte at addr (with higher bits zero, in a 16-bit
field).

CAT --
Shows the directory list from ZXpand(+).

CHR$128 n --
If n = 1, the CHR$128 character mode will be defined. If n=0, the CHR$64 character
mode will be defined. If n<>0 and even, an error condition exists.

CMOVE addr1 addr2 n -- F79,153 "c-move"
Move n bytes beginning at address addr1 to addr2. The contents of addr1 is moved first
proceeding toward high memory. If n is zero nothing is moved.

COLD --
Cold start of FORTH. It performs the following actions, in addition to WARM:
 - Setup the RAM from the value in RAMTOP system variable.
 - Removes all words from the dictionary at an address higher than FENCE.
 - initializes all relevant user variables.

COMPILE F79,C,146
When a word containing COMPILE executes, the 16-bit value following the
compilation address of COMPILE is copied (compiled) into the dictionary. i.e.,
COMPILE DUP will copy the compilation address of DUP.

CONSTANT n -- F79,185
A defining word used in the form:

n CONSTANT <name>
to create a dictionary entry for <name>, leaving n in its parameter field. When <name>
is later executed, n will be left on the stack.

96

CONTEXT -- addr F79,U,151
Leave the address of a variable specifying the vocabulary in which dictionary searches
are to be made, during interpretation of the input stream.

CONVERT d1 addr1 -- d2 addr2 F79,195
Convert to the equivalent stack number the text beginning at addr1+1 with regard to
BASE. The new value is accumulated into double number d1, being left as d2. addr2 is
the address of the first non-convertible character.

COUNT addr -- addr+1 n F79,159
Leave the address addr+1 and the character count of text beginning at addr. The first
byte at addr must contain the character count n. Range of n is {0..255}.

CR F79,160 "c-r"
Cause a carriage-return and line-feed to occur at the current output device.

CREATE F79,239
A defining word used in the form:

CREATE <name>
to create a dictionary entry for <name>, without allocating any parameter field
memory. When <name> is subsequently executed, the address of the first byte of
<name>'s parameter field is left on the stack.

CURRENT -- addr F79,U,137
Leave the address of a variable specifying the vocabulary into which new word
definitions are to be entered.

D+ d1 d2 -- d3 F79,241 "d-plus"
Leave the arithmetic sum of d1 plus d2.

D+- d1 n -- d2
Negate d1 if n is negative, leaving the result as d2.

D- d1 d2 -- d3 F79,D,129 "d-minus"
Subtract d2 from d1 and leave the difference d3.

D. d -- F79,D,129 "d-dot"
Display d converted according to BASE in a free field format, with one trailing blank.
Display the sign only if negative.

97

D.R d n -- F79,D "d-dot-r"
Display d converted according to BASE, right aligned in an c character field. Display the
sign only if negative.

D< d1 d2 -- f F79,244 "d-less-than"
True if d1 is less than d2.

DABS d1 -- d2 F79,D "d-absolute"
Leave as a positive double number d2, the absolute value of a double number, d1.
{0..2,147,483,647}

DECIMAL F79,197
Set the input-output numeric conversion base to ten.

DEFINITIONS F79,155
Set CURRENT to the CONTEXT vocabulary so that subsequent definitions will be
created in the vocabulary previously selected as CONTEXT.

DELETE
Reads a word from the input stream and deletes the file with that name.

DEPTH -- n F79,238
Leave the number of the quantity of 16-bit values contained in the data stack, before n
added.

DLITERAL d -- d (executing) FIG
d -- (compiling)

If compiling, compile a stack double number into a literal. Later execution of the
definition containing the literal will push it to the stack. If executing, the number will
remain on the stack.

DNEGATE d -- -d F79,245 "d-negate"
Leave the two's complement of a double number.

DO n1 n2 – F79,I,C,142
Used in a colon-definition:

DO ... LOOP or
DO ... +LOOP

Begin a loop which will terminate based on control parameters. The loop index begins
at n2, and terminates based on the limit n1. At LOOP or +LOOP, the index is modified
by a positive or negative value. The range of a DO-LOOP is determined by the

98

terminating word. DO-LOOP may be nested. Capacity for three levels of nesting is
specified as a minimum for standard systems.

DOES> F79,I,C,168 "does"
Define the run-time action of a word created by a high-level defining word. Used in the
form:

: <name> ... CREATE ... DOES> ... ;
and then <namex> <name>

Marks the termination of the defining part of the defining word <name> and begins the
defining of the run-time action for words that will later be defined by <name>. On
execution of <namex> the sequence of words between DOES> and ; are executed,
with the address of <namex>'s parameter field on the stack.

DP -- addr FIG,U
A user variable, the dictionary pointer, which contains the address of the next free
memory above the dictionary. The value may be read by HERE and altered by ALLOT.

DPL -- addr F79,R "d-p-l"
A user variable containing the number of digits to the right of the decimal point in
double integer input. A value of -1 for DPL indicates there is no decimal point and the
number is recognized as a 16-bit integer.

DROP n -- F79,233
Drop the top number from the stack.

DUP n -- n n F79,205 "dupe"
Leave a copy of the top stack number.

ELSE -- F79,I,C,167
Used in a colon-definition in the form:

IF ... ELSE ... THEN
ELSE executes after the true part following IF. ELSE forces execution to skip till
just after THEN. It has no effect on the stack. (see IF)

EMIT c -- F79,207
Transmit character to the current output device.

EMPTY-BUFFERS F79,145
Marks the block buffer as empty. FLUSH will not copy it to the RAM disk.

99

ERASE addr n -- F79,R,182
Fill an area of memory over n bytes with zeros, starting at addr. If n is zero or less, take
no action.

ERRNUM -- addr
Executed if NUMBER encounters an error. It’s an execution vector, so this way the word
NUMBER can be extended to parse other data types, for instance floating point
numbers.

EXEC:
A defining word executed in the form:

EXEC: <name>
to create an execution vector word, initially assigned to execute NOOP. The action of
<name> can then be assigned to the word <action> with the use of word IS, as follow:

‘ <action> IS <name>

EXECUTE addr -- F79,163
Execute the dictionary entry whose compilation address is on the stack.

EXIT F79,C,117
When compiled within a colon-definition, terminate execution of that definition, at that
point. May not be used within a DO...LOOP.

EXPECT addr n -- F79,189
Transfer characters from the terminal beginning at addr, upward, until a "return" or the
count of n has been received. Take no action for n less than or equal to zero. One or
two nulls are added at the end of text.

FAST --
Sets the FAST mode. Processing takes place without generating video, but KEY
automatically turns to SLOW mode to allow the visualization of what is typed, returning
to FAST mode when finished.

FENCE -- addr FIG,U
A user variable containing an address below which FORGETting is trapped. To forget
below this point the user must alter the contents of FENCE.

FILL addr n b -- F79,234
Fill memory beginning at address with a sequence of n copies of byte. If the quantity n
is less than or equal to zero, take no action.

100

FIND -- addr F79,203
Leave the compilation address of the next word name, which is accepted from the input
stream. If that word cannot be found in the dictionary after a search of CONTEXT and
FORTH leave zero.

FIRST -- n FIG
A constant that leaves the first address of the block buffer.

FLOAD --
Reads a word from the input stream and loads from the SD card the file with that name.
Executed in the form:

FLOAD <name.F79>

FLUSH

Saves the contents of the block buffer to the RAM disk if it is not empty. Next it marks
the block buffer as empty.

FORGET F79,186
Execute in the form:

FORGET <name>
Delete from the dictionary <name> (which is in the CURRENT vocabulary) and all
words added to the dictionary after <name>, regardless of their vocabulary. Failure to
find <name> in CURRENT or FORTH is an error condition.

FORMAT --
Fills the entire RAM disk with blank spaces.

FORTH -- F79,I,187
The name of the primary vocabulary. Execution makes FORTH the CONTEXT
vocabulary. New definitions become a part of the FORTH until a differing CURRENT
vocabulary is established. User vocabularies conclude by 'chaining' to FORTH, so it
should be considered that FORTH is 'contained' within each user's vocabulary.

FSAVE --
Reads a word from the input stream and saves on the SD card with that name a copy of
the user's vocabulary. Executed in the form:

FSAVE <name.F79>

GET n --
Reads a word from the input stream and reads the file with that name from mass
storage into the RAM disk at screen n and any following screens.

101

H. n --
Output n as a hexadecimal integer with one trailing blank. The current base is
unchanged.

HERE -- addr F79,188
Return the address of the next available dictionary location.

HEX -- F79,R,162
Set the numeric input-output conversion base to sixteen.

HLD -- addr U
A user variable that holds the address of the latest character of text during numeric
output conversion.

HOLD c -- F79,175
Insert c into a pictured numeric output string. May only be used between <# and #> .

I -- n F79,C,136
Copy the loop index onto the data stack. May only be used in the form:

DO ... I ... LOOP or
DO ... I ... +LOOP

IF f -- F79,I,C,210
Used in a colon-definition in the form:

flag IF ... ELSE ... THEN or
flag IF ... THEN

If flag is true, the words following IF are executed and the words following ELSE are
skipped. The ELSE part is optional. If flag is false, words between IF and ELSE, or
between IF and THEN (when no ELSE is used), are skipped. IF-ELSE-THEN
conditionals may be nested.

IMMEDIATE F79,103
Marks the most recently made dictionary entry as a word which will be executed when
encountered during compilation rather than compiled.

INDEX n1 n2 -- F79,R
Print the first line of each screen over the range {n1..n2}. This displays the first line of
each screen of source text, which conventionally contains a title.

INKEY -- c
c=0 if no key is pressed, else c is the ASCII code of the key being pressed.

102

INTERPRET F79,R
Begin interpretation at the character indexed by the contents of >IN relative to the
block number contained in BLK, continuing until the input stream is exhausted. If
BLK contains zero, interpret characters from the terminal input buffer.

INVERSE --
Toggles bit 7 of the next characters to be sent to the terminal.
(See CH128 word).

IS --
Used to assign an action to an exection vector word. See EXEC:.

J -- n F79,C,225
Return the index of the next outer loop. May only be used within a nested DO-LOOP in
the form:
DO ... DO ... J ... LOOP ... LOOP

KEY -- c F79,100
Leave the ASCII value of the next available character from the current input device.

LATEST -- addr FIG
Leave the name field address of the topmost word in the CURRENT vocabulary.

LEAVE F79,C,213
Force termination of a DO-LOOP at the next LOOP or +LOOP by setting the loop limit
equal to the current value of the index. The index itself remains unchanged, and
execution proceeds normally until the loop terminating word is encountered.

LIMIT -- addr
The address just above the block buffer.

LIST n -- F79,109
List the ASCII symbolic contents of screen n on the current output device, setting SCR
to contain n. n is unsigned.

LITERAL n -- F79,I,215
If compiling, then compile the stack value n as a 16-bit literal, which when later
executed, will leave n on the stack.

LO -- addr
Variable containing the bottom address of the RAM disk.

103

LOAD n -- F79,202
Begin interpretation of screen n by making it the input stream; preserve the locators of
the present input stream (from >IN and BLK). If interpretation is not terminated
explicitly it will be terminated when the input stream is exhausted. Control then returns
to the input stream containing LOAD, determined by the input stream locators >IN
and BLK.

LOOP F79,I,C,124
Increment the DO-LOOP index by one, terminating the loop if the new index is equal
to or greater than the limit. The limit and index are signed numbers in the range {-
32,768 ..32,767}.

M/MOD ud1 u2 -- u3 ud4 FIG "m-divide-mod"
An unsigned mixed magnitude math operation which leaves a double quotient ud4 and
remainder u3, from a double dividend ud1 and single divisor u2.

MAX n1 n2 -- n3 F79,218 "max"
Leave the greater of two numbers.

MEM --
Reports the amount of memory available between the top of the data stack and the
dictionary pointer.

MIN n1 n2 -- n3 F79,127 "min"
Leave the lesser of two numbers.

MOD n1 n2 -- n3 F79,104
Divide n1 by n2, leaving the remainder n3, with the same sign as n1.

MOVE addr1 addr2 n -- F79,113
Move the specified quantity n of 16-bit memory cells beginning at addr1 into memory
at addr2. The contents of addr1 is moved first. If n is negative or zero, nothing is moved.

NEGATE n -- -n F79,177
Leave the two's complement of a number, i.e., the difference of zero less n.

NOOP --
No operation (do nothing).

NOT f1 -- f2 F79,165
Reverse the boolean value of f1. This is identical to 0=.

104

NUMBER addr -- n F79,R
Convert the count and character string at addr, to a signed 32-bit integer, using the
current base. If numeric conversion is not possible, an error condition exists. The string
may contain a preceding negative sign.

OR n1 n2 -- n3 F79,223
Leave the bitwise inclusive-or of two numbers.

OVER n1 n2 -- n1 n2 n1 F79,170
Leave a copy of the second number on the stack.

P! b addr --
Writes b to the output port at address addr.

P@ addr -- b
Reads b from the input port address addr.

PAD -- addr F79,226
The address of a scratch area used to hold character strings for intermediate
processing. The minimum capacity of PAD is 64 characters (addr through addr+63).

PAGE F79,R
Clear the terminal screen or perform an action suitable to the output device currently
active.

PAUSE --
An execution vector that switch to next task in multi-tasking mode. In single-tasking
mode execute NOOP.

PICK n1 -- n2 F79,240
Return the contents of the n1-th stack value, not counting n1 itself. An error condition
results for n less than one.

2 PICK is equivalent to OVER. {1..n}

PLOT n1 n2 n3 --
Plots a single point with x-coordinate n1 and y-coordinate n2 with mode n3 (0 = unplot,
1=plot, 2=move, 3=invert). Coordinates are from (0,0) to (63,47).

PUT n1 n2 --
Reads a word from the input stream and writes the screens n1 through n2 to the mass
storage media in a file with that name.

105

QUERY F79,235
Accept input of up to 80 characters (or until a 'return') from the operator's terminal,
into the terminal input buffer. WORD may be used to accept text from this buffer as the
input stream, by setting >IN and BLK to zero.

QUIT F79,211
Clear the return stack, setting execution mode, and return control to the terminal. No
message is given.

R> -- n F79,C,110 "r-from"
Transfer n from the return stack to the data stack.

R0 -- addr U "r=zero"
A user variable containing the initial location of the return stack.

R@ -- n F79,C,228 "r-fetch"
Copy the number on top of the return stack to the data stack.

RAND u --
Set the random number seed. If u is zero then use the FRAMES counter.

REPEAT -- F79,I,C,120
Used in a colon-definition in the form:

BEGIN ... WHILE ... REPEAT
At run-time, REPEAT returns to just after the corresponding BEGIN.

RND u1 -- u2
Generates a pseudo-random number between 0 and u1-1, using as root the value
stored at address 16434. See RAND .

ROLL n -- F79,236
Extract the n-th stack value to the top of the stack, not counting n itself, moving the
remaining values into the vacated position. An error condition results for n less than
one. {1..n}

3 ROLL = ROT
1 ROLL = null operation

ROT n1 n2 n3 -- n2 n3 n1 F79,212 "rote"
Rotate the top three values, bringing the deepest to the top.

106

RP! -- "r-p-zero"
Initialize the return stack pointer from R0.

RP@ -- addr "r-p-fetch"
Returns the value of the return stack pointer.

RUN --
Reads a word from the input stream and loads a file with that name into the RAM disk
starting from screen 1. Next loads the first screen.

S->D n -- d FIG
Sign extend a single number to form a double number.

S0 -- addr F79,R "s-zero"
Returns the address of the bottom of the stack, when empty.

SAVE-BUFFERS F79,221
Copies the contents of the block buffer to the RAM disk if it contains a valid screen.

SCR -- addr F79,U,217
Leave the address of a variable containing the number of the screen most recently
listed.

SIGN n -- F79,C,140
Insert the ASCII "-" (minus sign) into the pictured numeric output string, if n is
negative.

SLOW
Sets the SLOW mode.

SMUDGE -- FIG
Used during word definition to toggle the "smudge bit" in a definitions name field. This
prevents an uncompleted definition from being found during dictionary searches, until
compiling is completed without error.

SOUND n1 n2 --
Writes n1 to register n2 of the AY sound chip (ZONX-81 compatible).

SP! --
Initialize the stack pointer from S0.

107

SP@ -- addr F79,R,214 "s-p-fetch"
Return the address of the top of the stack, just before SP@ was executed.

SPACE -- F79,232
Transmit an ASCII blank to the current output device.

SPACES n -- F79,231
Transmit n spaces to the current output device. Take no action for n of zero or less.

STATE -- addr F79,U,164
Leave the address of the variable containing the compilation state. A non-zero content
indicates compilation is occurring, but the value itself may be installation dependent.

SWAP n1 n2 -- n2 n1 F79,230
Exchange the top two stack values.

THEN F79,I,C,161
Used in a colon-definition in the form:

IF ... ELSE ... THEN or
IF ... THEN

THEN is the point where execution resumes after ELSE or IF (when no ELSE is
present).

TIB -- addr
The address of the text input buffer. This buffer is used to hold characters when the
input stream is coming from the current input device. In this system the capacity of
TIB is 128 characters.

TO n --
Store n in the parameter field of <name>. Executed in the form:

n TO <name>

TOGGLE addr b -- FIG
Complement the contents of addr by the bit pattern b.

TYPE addr n -- F79,222
Transmit n characters beginning at address to the current output device. No action
takes place for n less than or equal to zero.

108

U* un1 un2 -- ud3 F79,242 "u-times"
Perform an unsigned multiplication of un1 by un2, leaving the double number product
ud3. All values are unsigned.

U. un -- F79,106 "u-dot"
Display un converted according to BASE as an unsigned number, in a free-field format,
with one trailing blank.

U/MOD ud1 un2 -- un3 un4 F79,243 "u-divide-mod"
Perform the unsigned division of double number ud1 by un2, leaving the remainder
un3, and the quotient un4. All values are unsigned.

U< un1 un2 -- f F79,150 "u-less-than"
Leave the flag representing the magnitude comparison of un1 < un2 where un1 and
un2 are treated as 16-bit unsigned integers.

UNDER x1 x2 -- x2
Removes the second value from the stack.

UNTIL f -- F79,I,C,237
Within a colon-definition, mark the end of a BEGIN-UNTIL loop, which will
terminate based on flag. If flag is true, the loop is terminated. If flag is false, execution
returns to the first word after BEGIN. BEGIN-UNTIL structures may be nested.

UPDATE F79,229
Mark the most recently referenced block as modified. The block will subsequently be
automatically transferred to mass storage should its memory buffer be needed for
storage of a different block, or upon execution of SAVE-BUFFERS. As this system
has a fast RAM disk, buffers will always be written back.

VALUE F79,227
A defining word executed in the form:

VALUE <name>
to create a dictionary entry for <name> and allot two bytes for storage in the parameter
field, initializing it to zero. When <name> is later executed, the value stored in its
parameter field will be left on the stack. This value can also be changed using the words
TO and TO+.

VARIABLE F79,227
A defining word executed in the form:

VARIABLE <name>

109

to create a dictionary entry for <name> and allot two bytes for storage in the parameter
field, initializing it to zero. When <name> is later executed, it will place the storage
address on the stack.

VLIST F79,R
List the word names of the CONTEXT vocabulary starting with the most recent
definition.

VOC-LINK -- addr U
A user variable containing the address of a field in the definition of the most recently
created vocabulary. All vocabulary names are linked by these fields to allow control for
FORGETting thru multiple vocabularies.

VOCABULARY F79,208
A defining word executed in the form:

VOCABULARY <name>
to create (in the CURRENT vocabulary) a dictionary entry for <name>, which specifies
a new ordered list of word definitions. Subsequent execution of <name> will make it
the CONTEXT vocabulary. When <name> becomes the CURRENT vocabulary (see
DEFINITIONS), new definitions will be created in that list.

In lieu of any further specification, new vocabularies 'chain' to FORTH. That is, when a
dictionary search through a vocabulary is exhausted, FORTH will be searched.

WAIT u --
Waits until u timer interrupts have occurred. While waiting, execute the word PAUSE.

WARM
Warm start of Forth. It performs the following actions:
 - Reset CONTEXT and CURRENT to the FORTH vocabulary.
 - Reset some user variables.
 - Execute the command loop via QUIT.

WHILE f -- F79,I,C,149
Used in the form:

BEGIN ... flag WHILE ... REPEAT
Select conditional execution based on flag. On a true flag, continue execution through
to REPEAT, which then returns back to just after BEGIN. On a false flag, skip
execution to just after REPEAT, exiting the structure.

110

WORD c -- addr F79,181
Receive characters from the input stream until the non-zero delimiting character is
encountered or the input stream is exhausted, ignoring leading delimiters. The
characters are stored as a packed string with the character count in the first character
position. The actual delimiter encountered (char or null) is stored at the end of the text
but not included in the count. If the input stream was exhausted as WORD is called,
then a zero length will result. The address of the beginning of this packed string is left
on the stack.

XOR n1 n2 -- n3 F79,174 "x-or"
Leave the bitwise exclusive-or of two numbers.

[I,125 "left-bracket"
End the compilation mode. The text from the input stream is subsequently executed.
See].

[COMPILE] F79,I,C,179 "bracket-compile"
Used in a colon-definition in the form:

[COMPILE] <name>
Forces compilation of the following word. This allows compilation of an IMMEDIATE
word when it would otherwise be executed.

] F79,126 "right-bracket"
Sets the compilation mode. The text from the input stream is subsequently compiled.
See [.

\ “backslash”
Coment to the end of line. Only be used on a screen.

111

Appendix B
112

APPENDIX B - THE MEMORY DIAGRAMS

 ZXPand

FFFFH +------------------+
 | |
 | |
 | |
 | |
 | |
 | OVERLAY FROM |
 | $4000-$7FFF |
 | |
 | |
 | |
 | |
 | |
C000H +------------------+
 | OVERLAY FROM |
 | $2000-$3FFF |
A000H +------------------+
 | |
 | RAM DISK |
 | |
8000H +------------------+ LO (RAMTOP)
7FFFH | | LIMIT
 | BLOCK BUFFER |
7BFFH | | FIRST
7BFDH +------------------+ R0
 | Return Stack |
 | | |
 | V |
 | |
 | ^ |
 | | |
 | TIB |
7AFDH +------------------+ S0
 | Parameter Stack |
 | | |
 | V |
 | |
79FDH +------------------+
 | SAFETY GAP |
 | (12 bytes) |
79F1H +------------------+
 | |
 | ^ |
 | | |
 | Dictionary Space |
63C0H +------------------+ DP
 | FFH | DFILE end mark
43C4H +------------------+
 | |
 | DFILE |
 | |
40ABH +------------------+
 | |
 | BASIC LINES |
 | |
407DH +------------------+
 | |
 | USER area |
 | |
405DH +------------------+
 | |
 | SYSTEM VARIABLES |
 | |
4000H +------------------+
 | |
 | FORTH |
 | KERNEL |
 | |
2000H +------------------+

 ZXPand + Chroma 81
 (Switch 3 + Switch 6 ON)

FFFFH +------------------+
 | OVERLAY FROM |
 | $2000-$3FFF |
E000H +------------------+
 | | +------------------+ C3C3H
 | FREE | | COLOUR ATTRIBUTE |
 | MEMORY | _| FILE |
 | | / | (Colour Mode 1) |
C3C8H +------------------+ / +------------------+ C0ABH
 |//////////////////|_/
 |//COLOUR MEMORY///|
 |//////AREA////////|__ +------------------+ C3FFH
 |//////////////////| \ | CHARACTER COLOUR |
C000H +------------------+ _| MAP |
 | OVERLAY FROM | | (Colour Mode 0) |
 | $2000-$3FFF | +------------------+ C000H
A000H +------------------+
 | |
 | RAM DISK |
 | |
8000H +------------------+ LO (RAMTOP)
7FFFH | | LIMIT
 | BLOCK BUFFER |
7BFFH | | FIRST
7BFDH +------------------+ R0
 | Return Stack |
 | | |
 | V |
 | |
 | ^ |
 | | |
 | TIB |
7AFDH +------------------+ S0
 | Parameter Stack |
 | | |
 | V |
 | |
79FDH +------------------+
 | SAFETY GAP |
 | (12 bytes) |
79F1H +------------------+
 | |
 | ^ |
 | | |
 | Dictionary Space |
63C0H +------------------+ DP
 | FFH | DFILE end mark
43C4H +------------------+
 | |
 | DFILE |
 | |
40ABH +------------------+
 | |
 | BASIC LINES |
 | |
407DH +------------------+
 | |
 | USER area |
 | |
405DH +------------------+
 | |
 | SYSTEM VARIABLES |
 | |
4000H +------------------+
 | |
 | FORTH |
 | KERNEL |
 | |
2000H +------------------+

113

Appendix C
114

APPENDIX C – CHARACTER SETS

ARCADE.FN

CPC.FN

115

SINCLAIR.FN

SINSERF.FN

116

TF79.FN

TF79B.FN

117

	1 THE ZX81 TODDY FORTH-79
	1.1 INTRODUCTION
	1.2 HARDWARE REQUIREMENTS
	1.3 INSTALLATION
	1.4 CHARACTER SET
	1.4.1 THE CHR$128 WORD
	1.4.2 THE INVERSE WORD

	1.5 THE KEYBOARD
	1.5.1 THE TERMINAL INPUT BUFFER

	1.6 ZONX-81 SOUND GENERATOR SUPPORT
	1.7 EXECUTION VECTORS AND VALUES
	1.7.1 EXECUTION VECTORS
	1.7.2 VALUES

	1.8 THE PLOT WORD
	1.9 PSEUDO-RANDOM NUMBER GENERATOR
	1.10 ERROR CONDITIONS AND THEIR EFFECTS

	2 SCREENS AND FILES
	2.1 THE RAM DISK
	2.2 LOADING AND SAVING FILES
	2.3 LOADING SCREENS
	2.4 SAVING YOUR CHANGES IN TF79

	3 THE EDITOR
	3.1 INTRODUCTION
	3.2 THE CONTROL KEYS
	3.3 THE EDITOR MODES
	3.4 THE EDITOR VOCABULARY

	4 THE ASSEMBLER EXTENSION WORD SET
	4.1 INTRODUCTION
	4.2 LOADING THE ASSEMBLER
	4.3 CREATING CODE WORDS
	4.4 THE REGISTERS
	4.5 THE INSTRUCTION SET
	4.6 CONTROL STRUCTURES

	5 THE DOUBLE NUMBER EXTENSION WORD SET
	5.1 INTRODUCTION
	5.2 EXTRA WORDS

	6 THE FLOATING POINT EXTENSION WORD SET
	6.1 INTRODUCTION
	6.2 FORMAT AND PRECISION
	6.3 WORDS FROM FLOATING
	6.4 WORDS FROM TRANSCEN

	7 THE PRINTER EXTENSION WORD SET
	8 THE CHROMA-81 EXTENSION WORD SET
	8.1 THE CHROMA-81 INTERFACE
	8.2 OPERATING THE CHROMA-81 WITH TF79
	8.3 THE CHROMA-81 WORD SET

	9 THE HIRES GRAPHICS EXTENSION WORD SET
	9.1 THE GRAPHIC SCREEN
	9.2 THE TEXT TERMINAL
	9.3 THE GRAPHIC TERMINAL
	9.4 ADDING SOME COLOURS
	9.5 THE HGR WORDS

	10 MULTI-TASKING SUPPORT
	10.1 THE MULTI-TASKING ENVIRONMENT
	10.2 DEFINING AND RUNNING TASKS
	10.3 CONTROLLING TASKS
	10.4 MULTI-TASKING DEMO

	11 INSIDE THE COMPILER
	11.1 THE INNER INTERPRETER
	11.2 HEADER STRUCTURE
	11.3 MEMORY MAP
	11.4 CHANGING THE MEMORY MAP

	APPENDIX A - THE IMPLEMENTED WORD SETS
	A.1 THE STACK NOTATION
	A.2 DEFINITION OF TERMS:
	A.3 WORDS IN FORTH VOCABULARY

	APPENDIX B - THE MEMORY DIAGRAMS
	APPENDIX C – CHARACTER SETS

