

I,

11,

III.

.

A.
B.

Ce
De

Contents

Introduction
The Key Commands
The Assembler

Sample Prozrams

Appendicles

Error reports

Useful Asgsembler/Disaggembler
routines

Useful ROM routines
Useful books

I. Introduction

Welcome to the ZX Assembler/Disassembler by Bob Berch., The
primary purpose of thls program 1s to help you write and debug
machlne code programs. Included in this one program is an asgembler
utilizing standard Z80 mnemonics, a disassembler giving hex or
declmal output to the sereen or printer, a hex or declmal memory
editor, a REM generator to make REM statements to save machine
code in, and a set of binary SAVE snd LCOAD routlnes. The program
ig a little over UK long and 13 supplled on cassette in two versions,
back to back: . .

1. Hi-rem, above RAMTOP, program at 28-32K. Those with only

., a 16K rampack {the minimum configuration) must use this one,
2, Lo-rem, in the ROM transparent area, program at 12-16K,
To use this version you must have memory in this area as
with a 6LK Rampack or a Hunter board,
In addition, thls program 1s avallable on EPROM in the lo-mem
version, without the LOAD and SAVE routines, as an exactly LK
program. A plug-in cartridge kit is avallable to hold the EPROM.

If you can use the lo-med version,lt 1s recomended you do so
ag you will find it more out-of-the~-way and also more lmmune to
crashes from your generated machlne code gone haywire.

This manual will not attempt to teach you machine code pro-
gramming and you are refered to some of the many Z80 books on the
market in appendix D , You are given sample programs in part IV
and s falrly complete list of usable ROM routlnes and thelr calling
sequences in appendix C and a similar list o usable Assembler/
Disassembler routines in appendix B,

To load the tape, choose the proper version,and use the nams
*A3MB'. It willl suto-boot ltself in place and the hl-mem version
will lower RAMTOP, A tltle page will be displayed,

Aggsepbly language source code for thes assembler 1s entered
under Basic in REM statements; the specificatlons are glven below,
The Assembler/Disassembler is called with a RAND USR command and
the assembly 1s started by pressing the Z key. If no errora are
found, the objeot oode 1s deposited in a string nsmed A3, Here 1t
may bs viewed wlth the disassembler, moved to another part of memory
or & REM statement, edited, or saved as & binary flle,

The RAND USR command for each version ist
low-mem RAND U3R 13616
hl-men RAND U3R 30000

Once the RAND USR call has been made, the varlous functicha
of the Assembler/Disassembler are called with gingle letter
key commands (lettsrs A to Z). An asterisk in the lower left
of the acreen signifies a walt for cna of these commands.

1Il. The Key Commandg

First, observe the four dlsplay modes illustrated below:

Disassembly Mode

Decimal

Hex

' T "
~ o~ L]
Ll LR) ~4
~P~ 0 "} [TV
Le1 I] =) wi_)
ey e~ —~ I 3 -
iy~ ~0 RUELT T R] P~ 0aGin
WO _JiidNSn_f ~ a2 wnwnin
WHEL~G Zod I e 10
— ja) - (o] ol v 8 N I e e
JALGGEZAAVCGAZUCGIENNTIG
O dADCIDU I TR ZZOVXEE ™D
17}
T~ ~r~ £
LU A ~t L]
Pt) a0 ~tul r~
n o <t <4 - 9]
Ny~ iy o -~ -
i rdsdr- y iy
— i Ie=pieln waf-ey W ik

o Gl SN H QU0 m S g
(it et Ol vt A~ At o D U S T g et

=

S0~ QM S - OME AN, N
Lol DR R R R I LTy R o T L T R g Tt]

PU | —
w0 0
k, - [-
Th @~ 'R [N [s 3
L <o ~ ~ _| -+
f-m—--—ho i —X- a0 [
o ~O ~Sin S~ b Lt WMy
RLOM A GQIHM0 8 ~aXZ [R N Dig As 1]
OOE-w Zf Id] -t
| g G - DTPPL ol sl os
DEAGOEZAa G WO ZINCOL el
Lar Y-S [N NN Ry L e R F o 0 T of ¥ radeall 38 s F V2 ¥ ¥ o]

-~ o
G

<ty
ft & N]

PRt (L O - g L S Y QOO0 L i 1)
RO e DO - O Ga i C

sl
LG L e e e el e e e L
[T FE Y FE TR Y R R Y Y Y Y Y R Y Y)

Data Modas

Dacimal

BHex

FS

GoiNadNo~OOCOOAWE DeUr <4
5 5 103 1 30 0 053 G 15 150 60 05 P50 1530 050 1 et o] e e et of
COOOGGLORGSOOROaESSaGs
GOOULGGLOLULOGSSGOGGLAGE
AOHALLONDOTOOUOSGIGNGND

QULGLMFOOGAUAYUCHY I IO G0

14

T > m
iy @ ﬁ [
wi o Q =] B 24
e O C z = T o
U g 0T WO SN[K

L2 L I T T g oot toln
O NG NiddddddSi00y e
O e i o QT o O D 2 U T P et T e i O

~

[ha U L R s 7ot oo o2 (B]
GGG OOt rted el el e e Y O

1

DAL R B RTSRTeRa n e chun o]
QANMGHNET- OO At A e O

Ay -0 v U
i3 BHoG (w449 S0hd O
Ol g rd G 09 4 QD LI TGO QU A v P Ol

« |

T > z
F4TTIEE N ﬁ al
wae o w S O o] r 4
w0 £3 = z a .t %
G w IR WO SNCi0 et

BT LT R TV L D T Lo I R KO T ot R kg 117
CGLESE IS WAt T ORGOW

ﬂﬁs
Faarafatafdrafi vt i
GRRHOGHNGOMOGGGHRGRERNOGH
CaratafararititacirititliiiuonGasNew

In disassembly rode, the leftnost column of numbers 1is
the address, the raw data at those addresses 1s at center, and
the agsembly mnemonics are at the right.

In data mode there are five columna: the leftmost and
rightmost columns are the addresses (in hex and decimal), next
in 1s the data at each address (also in hex or decimal), and
finally in the center 1s the Sinclailr character equivalent of
that dats,

Now, the key commands in detall:

A enter addregs. A > will appear (or a >) If you are in hex
mode) and you enter the digits for the address for the top of
the page (TOP). Hex addresses are always four digits and need
no return. Decimal sddresses always nsed a return. The delete
key deletes the entire entry and you start again,

B looks backward in memory. If you're in data mode, you go backe
ward 22 addresses, If you're in disassembly mode, you go back
30 addressea, Disassembly backpages will gen=rally overlap,
but occaslonally will not, as with a field of all NOP's. In
addition, dlsassembly backpages will often land in the middle
of & multi-byte instruction and the first instructlon or two
will be gibberish. Just be aware of 1it,

C continue looking foward in memory, In both data and disassembly
mode the top of the new screesn starts with the byte after
the last byte on the present screen,

D data/d1leagsembly switch. Changes from disassembly to data mode
and back again,

E edlt memory. If in disassembly mode, You will be changed to
data mode. A cursor wlll appear at the top address and an
input prompt (hex or decimsl, depending on what mode you were
in last} at the bottom lert. Hex data is two digits and needs
no return; decimal data always needs a return. Entered data
will be poked into me.mory at the cursor address and the cursor
w11l be moved down the page. The up and down arrow keys can
be used to move the cursor over any addresses.

F set the EOF address, that 1s the end of file address. This
address is uged by the L, M, 3, T, and X coamands.)

G generate a REM. Enter the number of spaces desired within the
REM. Makes a 1 REM filled with x's.

E hex/deoifial switah. Changes from hexr to deoimal mode and baok
again,

load binary, Use tiH A command to get the first address to
ve loaded end the F command to set the last. A load will
procede until the last byte is loaded or the break key

is presseds

move memory. Moves a block of memory between and including
The TOP address ({¢] cursor) and the EOF address to the
address entered on the input prompt. Tha EOF address must
be greater than the TOP address. Ir the block of nmemory
overlaps its future posltion, this routine intelligently
avolds overwriting 1t by choosing a top-down or bottom-up
mnove ,

& (shifted) gquit, Used to exit any input prompt to get the

X

Z

~asterisk or to leave the asterisk to return to Baslc.

save binary. This ls the complement of L, of course, Use
the A anf F commands to set the limits to save} yYou save
up to and including the EOF byte.

Besides being used to to save flles of your asgembled
code, these commands can be used to load and list ‘unlist~
able' programs or load, edit, and save damaged tapes.

No name or header is saved with these files, Jjust raw data.

During & save, pressing break will return to Baslc.

type output, Outputs to a Timex or Sinclalr printer, 1n
whatever mode you are in, the present and consecutlve
screens up to the EOF address. Like save, you may break,
but will be returned to Basle,

clear. Jets to zerosg all memory from the TOP address to
and including the EOF address.

agsemble. Read on.

Notes some commands ask OK? before proceding. A 'Y! or an
enter will prooede. A 'N'; a 'break’ or a shifted ¢ will allow
you an escape.

III. The Asgsembler

Before calling the assembler (with the Z cormand), the
source code must be entered and present in memory. This 1s done
under Basic, entering each statement in a REM statement.

Here are the rules:

1. The operatlion code must be immediatly after the REM followed
by one or more blanks or an end of line. The operand follows,
parts of the operand seperated by a comma, then an optlonal
semi-colon and comments., Blanks are lgnored in the operand but
nust not appear in the op code. A line full of comments starts
wlth a szemicolon.

“.Your REM statements are edited or deleted like any Baslc
statement,

2. In the operand, variables in the Basic variable area may be
used 1in place of 2ny number. Variables so defined must be at
least three charapeters long and not start with the letter H.
Define the varlables with LET statements, elther in inpmediste
mode or as progr:m statements after a END statement (see below)
The second way better documents your program, Remember to 'RUN!
your program besfore talling the assembler to execute your LETs.

Je Hexadeclmal constants are preceded by an 'H' and are two,
three, or four diglts long. when only two digits are given for
a 16 Bit constant, they will be the low order byte,

. Declmal data 1s accepted in the range zero to 65535.

Character data Within quotes is allowed, one or two

characters long. More than two characters ray be glven, but
only the last two are recognized. Any character code is allowed
except the quote (0Bh) and the enter (76h).

examples

valid constants invalld constants
. H543 {Osk3h) +1

‘=t (14h or 0014h) 70000

8193 {2001h) H7

‘wxyz? . (3E3Fh) -1

k., Branch instructions use the line nunber or a varjlable
squal to a line number to reference an address, or you may
use an abszolute sddress. To reference a line number, put a
slash in front of the numbsr. LD instructions may also use
& slash in front of & number to reference a line in the program.

exampless
CALL /1200 calls the subroutine at line 1200
JR /B0 Jumps to 1line 80

6,

CALL HOAZ2A calls the ROM routine at 0A2Ah

LD HL,/TB1 where TBl is defined by a LET statement
at the end of the program as some line
in the program, HL l1s loaded with the
address of that line,

Instructions are exactly as printed in the ZXB1/TS1000

zanual appendix with two small exceptlions:

€a.
uged

7.

1. EX AP,AP' pghould leave out the prime aslgn (that 1is,
‘ EX AF,AP).

2, I1¥ 0, IM i, and IM 2 are written without spaces {(that
is, IMO, IM1, and IM2)

Note, this 13 how the disassembler prints them, too,

As an optional sﬁorthand device, the '{i' symbol mey be
in place of *(HL)'.

There are four pseudo-opst ®

1. ORG specifies the run~time addregs for the first
instruction in your program. If used more than once, only
the last ORG is recognized, If no CRG is given, 16514 is agsumed.

2., DATA puts data in memory in sequence with the rest

of your code, There is no limit to the number of operand
parts, each seperated by a comma., There are three catagories
of operand parts allowed:

«. simple constants or variables. If the value 1s between
0 and 255, it is stored as cne byte, If the value is
between 256 and 65535 it is stored as two bytes, low byte

‘first. Note, to store HO001 as two bytes you must usge

_ HO1,HOO .

b. string data. In DATA statements only, any number of
characters within quotes is stored 1n entlirety. Same rule
concerning no quotes or enters.

¢. line number address, You may use a slash in front of
a constant or variabls to store a line number address, but
then make that the only operand part in that DATA statement,
3. RESV puts a specified number of zeros in memory.

ex, BRESV 5 is the sams as DATA 0,0,0,0,0

k., END is required as the last statement of your source
code,

o ki P ATt oy e —— . o — ——— =

Having c¢ntered your source code, call the assembler
with a HAND U3R xxxxx (depending on verslon) and then Z.
If the assembler finds errors, 1t will print *ASScMBLY sRROR!
and a report with an error number and line number. The report
codes are 1n appendix A, You will be left in Baslec to edit
your mistake; do so, and reocall the assembler.

If no errors are found, the output code will be deposited
in & string named Aj. You will be put in disasgsenbly mode
with the top of the page as the first byte of your code and
the EOP set to the last. With this, you are set to use the
move or save commands, If you move the display, make note of
the TOP address so you can find it later.

w
9

Tips

It 1s considered good rprogramming to be liberal with
comments. Especlally with this assembler, where line numbers
are used over labels for referenclng, you have lost a certian
readabllity good comments will regtore.

Of course, save your source code before You run your
program, for even simple mistakes may crash the system requiring
you to reset the machine., If you save your source right after
an ass:mbly (with the Basic SAVE), A} will be saved along
with it,

If you ars golng to run your code in a 1 REM agtatement
(location 16514 and on), you may want to generate the REM
before you assemble, Make it at least as blg a=z you expect
the code to be (you can estimate high with no 11l effects),
and change the first character to a gemicolon so the assembler
wlll lgnore it. Assemble, move the code to 16514 (4082 hex)
(TOP and EOF are already set, but check the length), and try
your program,

To save your machine code in a i1 REM without the source
cods, move tha code block to a protected part of memory (8 to
16K or above a lowered HAMTOP) or save your code to tape.
Executs a NEW, then generate a REM and reload your code into 1t.

IV. Sanmple Programs

This 23 byte program moves

1 SEM L XalRrn XK AN KKK AL RN AS,
$ ZEM #3HORIZAMTAL LEFT## everything in the display to
Z :Eg L#xsx% SCROLL #a#3#3% the left one posltion and fills
s = 5 .- in the last coluwnn with the
13 SEM LD E,22;LIME COUNTER
it :EH) HLT?DFIL);:LST L INE contentg of the lirst. g.tdl 1
2s ZEM assumeg & fully expande splay
23 zen Sysu o file,
24 ZEM INC HL,; 13T PIOSITION Note a.1 R2M has been
g2 :gg L0 AL SAUE FOR URAP generated (and the first char-
£3 SER cHEn - acter changed to a semi-colon)
22 SEM INC HL to move the code after assembly.
gg ;Em %géRthcnoLLli LINE The test program puts
22 IEN GBS NiFILL LAST POS. Screen than comtimally call
z - INC ! B n continua ca 8
53 ZEM FOP EC
TEn [YNE sERLOOP o sﬁ:;ﬁﬁ:'nne 26 withi
I 26 REM SUB A
}éé £§$-5§5g515395 for a non-wrap-around scroll,
122 0TI 288s
133 ZEM
EgE iEETTEET FROGRAN After assenbling, move
Zid TOR Z=1 TO 300 the code to the 1 REM and call
EZQ SRINT AT RMD#21,RND#31;"%"; the test program with a GOTO
230 NHEWT I 200)
238 2L .
240 _ET T=USR 16514
20 FOTC a4@

1 REM ;XX MK KRN W0 o W

%xxxzxxxxxxxxxzxxxxxxxxxxxxxxxxz Another graphlcs program,
here playlng with the character
& REM ; I3 C Srau
§ rEn | 3it Tl RhaRan naa table in the upper 512 bytes of
7 REM ;CHAR AT LOC, 1857 ROM. Code to be displayed is
,2 EEM JSCREEN POS. ON LINE 34 pagsed through the unused pys-
20 REM LD R, (16507) tem byte at 16507. Two ROM
22 FEM LD DE,H1EQQ® ;CODEx3 + routines are called: Print AT
2¢ FEM ey h:g fcﬁgg? TRELE and print a character. Two loops |
27 REM RDD HL,HL ;POS. are set up to process the ‘
23 REM ADD HL,HL ‘ lines and the 8 bits per line,
22 REM AOD HL,HL
32 FEM ADD HL,DE ‘
32 REM LD E,@ ;LINE CTR.
34 FEM LD BC,HOSQC ; FRINT PO3.
A2 REM
4@ RPEM PUSH BC
42 REM PUSH DE

44 FEM PUSH HL
48 REM CALL HOBFS ; PRINT RT
48 FEM FOP RHL
48 REM ;
€9 REM LD C,£ ,Ps/U BYTE
S2 REM LD 8,8 ;BIT CTR.
6@ REM.RL C ;TEST BIT
62 REM LD R."R"
&4 REM JR C,r70
68 REM ZUB R
7@ FEM R3T H1@ ; PRINT
72 REM DJNZ 60
78 REM ;
8@ REH POP DE
82 REM FPOP B
83 BEH INC HL ; NEXT BYTE
84 REH INC B ; NEXT LINE
8¢ REM DEC E
83 REM JR NZ, s40
-93 REM RET
102 REM END
199 REH
2928 REM TEST PROGRAM
210 LET R=CODE INKEYS$
229 IF R=® THEN GOTO 21a
230 POKE 185027 ,R
24@ RAND USR 16514
250

GOTO 210

Agsembler Zrror Heports Appendix A

The error report 1s given similar to Basic errors, that
la, error number ~ slash - line number. These error numbers
apply:

1 NON REM STATEMENT or NO END STATEM:ENT. Only REMs are
allowed before the REM END and the REM END is required.

2 INVALID OP CODE., Nelther a Zilog mnemonic nor & ZX Assembler
pseuda op hasg been found. Remember, blanks are not allowed
before or within the op code,

3 BAD OPERAND SYNTAX. This ls the largest category and
could be many things. Check for correct number of operand
perts, spelling, punctuations, or the use of parenthesig,

4 VARIABLE NOT FOUND. You have specified a variable which
can't be found in the Basic variable area, Perhaps you
forgot to '"RUN' through your LETs.

5 DATA OUT OF RANGE. You have given a value greater than '
255 whers B bits is required or 65535 where 16 bits is
required,

6 PROGHAM TOO LARGE, The assembler has encountered insufficient
head room to process the mssembly. You must elther ralise
RAMTOP or assemble your program in two or mors gegments,

7 JUMP DISPLACEMENT TOO LARGE, You have msked for a JR or

DJNZ instruction to jump over 128 bytes away. Change to
& JP instruction.

8 INVALID LINE NUMBER. You have referenced a line number
beyond the end of your program,

i1

Useful Assenmbler/Disassembler RHoutines Appendix B

g The Assembler/Disassemblar contains some machine code
routines which you might want to use or maybe look at with the
disassembler and glean some interesting techniques. They are
given here with the address for the hl-mem version. 3ubtract
LOOOh to get the low-mem address,

address my name desgcription

7FEA INKY reads the keyboard returning the
‘ character value in the A reg. and the
L rege. No key pressed returns zero,
the break key 255, and the shift key 254,

7PDF INKW ' waits for a no key condition, then
: calls INKY.
7F6C " PRTN prints the contents of HL. Location

1641? (4021h} 1s used as & control byte
as follows:
bit 0 resst - print decimal

set ~ print hexadecimal
bit 1 reset - gigned decimal
set - unsigned decimal
bit 7 reset - 4 hex digits
aet - 2 hex digits
7PD1 PC1 prints the character or token of the

code in the A rege.

7FBO PRTC prints the characters following the
call until a 70h byte is reached.

7PC6 * TAB tabs the print position to the column
. specified by the L reg., setting to
blanks everything on the way.

7 FhaA INPUT inputs a numbexr to KL, prompting as
© described for the assembler/disassembler,

location 4021h is used as described
for PRTN. A shifted Q wlll get the carry.

771E SCRDN acrolls the se¢reen down and sets the
print position at 0,0.

770B SCRUP acrolls the screen up and sets the
print position at 21,0.

The table of 26 addresses for each key command starts st
74PC, You may further explore the assembler/dissssembler by
tracking down those addresses., Unassigned kers are routed to
7548, You may want to change unassigned key to jump to your own
routines,

12

i e e a8 p— o —

Useful ROM Routines Appendix €

Here are deseribed many of the useful ROM routines. There
are more, but they are often difficult to utilize. For in-depth
explainations, consult Dr. Ian Logan's disassemblies,

address

0000 R3T 0. Not really useful, but you should know this
is the cold start for the system. Cleavs RAM, sets
up a display file, etc,

0008 - R3T 8, The error restart. Prints the Basic error
: message, The byte following this call i1s inecremented
and taken mag the érror number, Line number is taken
from PPC (4007h),

0010 RST 16, Print s character, Code 13 taken from the
A reg. and must be 0-3Fh, 80h~BFh, or 76h, else
You will crash. AF, BC, DE and HL are all saved
and restored,
If bit 1 of FLAGS 1im set, ocutput will be sgent to
the printer,

0028 R3T 40, The floating~point.calculator. This facinating
routine takes up about one-third of the ROM and
performs all the Bagic arithemetic functions and
operations plus a number of special internsl ones,.
The bytes following this call are treated as instruc-
tions to manipulate data (five bytes each entry)
on the calculator stack. The end of this instruction
string is signaled by a 34h byte, Not just numbers,
but strings are manipulated by this caloulator,
their 5 byte entries containing address and length
pointers. The list of instruction codes is given at
the end of this section, RST 40 does not save and
reatore most reglsters,

02BB Scan keyboard. Returns in HL the 16 bit 'key value'.

0J1E Save one byte, Outputs to the cassatte port the byte
pointed to by HL. Unfortunatly, there is no simple
similar routine for loading,

07BD Decode keyboard, Takes 16 bit tkey value' from BC and
returns with HL pointing to the proper charaater
in the tables 007E to 0110,

0869 Copy soreen, Just llke the Basic command,

08rs5 Print AT. Enter with line no., in B reg. and column
no. in C reg. Computes new DF=CC with error checking.

13

0992

09p8

OAlF

OAZA

OA60.

0AG8

0B6B

0CO&
0F23
OF2B
0P46
OPL4B
111C

1308

1494

1520

1584

'Make room®, Used by the system to insert lines,
varlableg, expand the dlsplay file, etc. Updates
the system pointers when through. From (HL), makes
BC spaces. CALL 099B makes one space,

Finds the address of a line number in a Basic program,
inter with line no, in HL; exit with address in HL,

Clears the bottom screen and does a Print AT 23,0,
Clears totai screen, Jjust 11k Basic command,
Reclalm memory. Used by the system to delete lines,
variables, etc. At HL, deletes BC spaces, updating
the necegsary system plonters.

outputs a decimal number, up to 9999, taken from

BC reg.

prints a string of characters, including tckens,
pointed to by DE with length BC.

Plot, unplot, Enter w#ith B reg. holding ¥ coordinate,
C reg. holding X, To plot, poke T-ADDR (4030h) with
AOh; to unplot, poke it with 0,

Seroll, Just llke Basic.

Past, just like Basloc. -

3low, Just like Baslo,

Tests break key and carry ls set 1f not prassed,
Debounce keyboard. Call after a keyboard read,
Finds variables in the varlable area, To call, load
CE_ADD (4016 & 7) with the address of a string of
the name of tha variable you wish to rind. Also,
bit 7 of the C reg. must be reget, On return, the
carry will be set if no name was found, or the
carry u€ill be resst and HL will point to the last
letter of the nams in the variable area., Increment
HL and you may pickup the valus of the varlable, or
Af an array or string, its length parameters.

16 bit multiply. HL = HL * DE,

Clears the variable area.

BC to floating point. Converts the number in the BC
rege to & 5 byte f.p. number on the f.p. stack,

F.P. to BC. Opposite of BC to f.p. Carry 1s set if
reault is greater than 65535.

14

il

Calculator instructions

code

00 Jump. if stack top is true,
displacement byte follows

01 exchange top two valuas

02 delete top value .

0) subtracts top value from
2nd value,

o4 nultiplies top two wvulues

05 divides 2nd entry by top

06 2nd entry to power of 1st

07 ORs top two numbers

08 ANDs top two numbers

09 less than or equal operation

OA greater than or‘equal op.

0B not equal op.

0oc greater than op,

0D less than op.

08 equal to op,

or addition op.

10 ANDs a string and a number

11 string <= op,

12 string =» op,

13 string <> op,

14 string > op.

15 string < op.

16 string = op.

17 adds two strings

i8 negates top number

19 CODE function

1A VAL function

1B LEN function

iC - 3IN function

iD C0S8 function

1E TAN runction

ir ASN function

20 ACS function

21 ATN function

22 LN funotion

23 EXP function

24 INT function

25 3QR funotion

26 SGN function

27 AB3 function

28 PEEK function

29 U3R function

2A STR$ function

2B CHR§ funotion

15

code

through
C5

EO-
through
E5

NOT function
duplicates top entry
divides,returns int,
quotient and remainder
unconditional jump,
displicement follows
stack a number, data
follows

DINZ {using BERG),
disp, follows

legs than 0 test

gr. than 0 test

.end calculation

used by trig. functions
integer truncation
execute f.p., op. in
A reg.
converts E-format to
floating~point
calls serls generator
for trig, end log,
functions
stacks a 0
stacks a 1
stacks %
stacks pi1/2
stacks 10 decimal
stores top r.p.
entry in system
MEMBOT area
recalls MEMBOT
entry to the
f«.p.atack

Useful Books Appendix D

It 1is recomended you purchase tWwo 'Bibles':
1. A manual on the Z80 chip. If possible, go to a bookatore

or book department of a computer store and choose one whose
style you like. In the fileld are:

The 280 Agsembly Ianguage Programming Eanual and The Z80
Technical Manual by Zllog

280’ Assemb e Programming by Lance Leventhal,
Osborne/FcGraw Hill

ow to Program the ZBO,by Rodnay Zaks, SYBEX
The last one is avallable at Radio Shack stores.

2, A manual on the BK ROM. There 1s only one and it is good1

9inclair ZX81 ROM Disassembly Parts A & B by Dr. lan Logan,
Melbourne House

In addition, there are a few books out specifically on
the ZX81 and machine code:

Mastering Machine Code on the ZXB1 by Toni Baker, Reston

Machine n a Pr amming kade Simple by Michael Roberts,
Malbourne House

gnderatanding Your ZX81 ROM by Dr. Ian Logan, Melbourne
ousa

Mastering Machine Code is quite good. It explains tie Z80
ochip fully, Euf spends less time on this than the other books,
instead delving right into many meaty sample programse, ways to
save machine oode, and even using the floating-point calculator,

and Understanding the ROM are primarily
tutorials on the Z80 ohip and its instruotions., lade ?;mglg
quickly desoribes only one full-blown sample program (checkera).
uses bits of the ROM as examples, but only has
one thin chapter on its overall organization,

17

Vi.0 Notas

In the aesembler, JR and DJNZ instructions cannot reference
absolute addresses. In fact, the slash is actually optionalg
they will always reference line nos.

On indexed ips;%ructions utilizing a displacement, that
displacement may only be a decimal number, not hex. The
acceptable range on that number is =128 to +127, However,
during disassembly in decimal mode, the dilsplacement is printed
ag a decimal number 0 to 255, 255 belng equivalent to -1, ete,

The instruction in the form LD (XY+4),N (indexed 36h
instruction)is mis-disassembled as a three byte instruction

instead of four, the third byte bsing used twice. Examples in
the ROM of this bug start at 064kn,

18

	Blank Page
	Blank Page
	Blank Page

