CHAPTER

55

Appendix A
Code Character
214 VERIFY
215 BEEP
216 CIRCLE
217 INK
218 PAPER
219 FLASH
220 BRIGHT
221 INVERSE
222 OVER
223 ouT
LPRINT
225 LLIST
226 STOP
227 READ
228 DATA
229 RESTORE
230 NEW
231 BORDER
232 CONTINUE
233 DIiM
@4\: REM
235 FOR
236 GO TO
237 GO SUB
238 INPUT
=239 - LOAD
240 -~ LIST
241 LET
242 PAUSE
243 NEXT
244 POKE
245 PRINT
246 PLOT
247 RUN
248 SAVE
249 RANDOMIZE
250 IF
251 CLS
252 DRAW
253 CLEAR
254 RETURN
255 COPY

188

Hex
D6

D7
D8
D9
DA
DB
DC
DD

DE
DF
EO
E1
E2
E3
E4
Eb
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
Fo
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD

FE
FF

280 Assembler
sub N

rst 16
ret ¢
exx

jp NN

in

a,(N)

call ¢,NN

prefixes instruc-

tions using ix

sbc a,N
rst 24

ret po
pop:hl

ip po,NN
ex (sp).hl
call po,NN
push hl
and N

rst 32

ret pe

jo (hl)

ip pe.NN
ex de,hl
call pe,NN

xor N
rst 40
ret p
pop af

ip
di

p.NN

call p.NN
push af
orN

rst 48
retm

|d
jp
ei

sp,hl
m,NN

call m,NN
prefixes instruc-

tions using iy

cp N
rst 56

— after CB
set 2,(hl)

set 2,a
set 3.b
set 3,c
set 3d
set 3,e
set 3,h
set 3.1

— after ED

set 3,(hl)
set 3,a
setdb
set 4,c
set 4,d
setd,e
set 4,h
setd,l
set 4,(hl)
setd,a
set 5,b
set 5,c
set 5,d
setb.e
set 5,h
set 5,1
set 5,(hl)
setb,a
set 6,b
set 6,c
set 6,d
set 6,e
set 6,h
set 6,1
set 6,(hl)
set 6,a
set7,b
set 7,c
set 7,d
set7.e
set 7,h
set 7,|

set 7,(hl)
set7,a

Chapter 25

The system variables

The bytes in memory from 235521 to 23733 are set aside for specific uses by the
system. You can peek them to find out various things about the system, and some of
them can be usefully poked. They are listed here with their uses.

These are called system variables, and have names, but do not confuse them with
the variables used by the BASIC. The computer will not recognize the names as
referring to system variables, and they .are given solely as mnemonics for we
humans.

The abbreviations in column 1 have the following meanings:

X The variables should not be poked because the system might crash.
N Poking the variable will have no lasting effect.

The number in column 1 is the number of bytes in the variable. For two bytes, the
first one is the less significant byte — the reverse of what you might expect. So to
poke a value v to a two-byte variable at address n, use

POKE n,v—256*INT (v/256)

POKE n+1,INT (v/256)
and to peek its value, use the expression
PEEK n+256*PEEK (n+1)

Notes Address Name Contents

N8 23552 KSTATE Used in reading the keyboard.

N1 23560 LAST K Stores newly pressed key.

1 23561 REPDEL Time (in 50ths of a second — in 60ths of a second
in N. America) that a key must be held down
before it repeats. This starts off at 35, but you
can POKE in other values.

1 23562 REPPER Delay (in 50ths of a second — in 60ths of a
second in N. America) between successive
repeats of a key held down: initially 5.

N2 23563 DEFADD Address of arguments of user-defined function if
one is being evaluated; otherwise 0.

N1 23565 K DATA Stores 2nd byte of colour controls entered from
keyboard.

N2 23566 TVDATA Stores bytes of colour, AT and TAB controls
going to television.

X38 23568 STRMS Addresses of channels attached to streams.

2 23606 CHARS 256 less than address of character set (which

starts with space and carries on to the copyright
symbol). Normally in ROM, but you can set up
your own.in RAM and make CHARS point to it.

173

Chapter 25 Appendix A

Code Character Hex Z80 Assembler - after CB - after ED
Notes Address Name Contents 170 SCREENS$ AA xor d res 5,d ind
1 23608 RASP Length of waming buzz. o :P“ f\% i i S
1 23609 PIP Length of keyboard click. 173 TAB AD s i 5'|
1 23610 ERR NR 1 less than the report code. Starts off at 265 (for 174 VAL$ AE e ios 5’ (]
—1) so PEEK 23610 gives 255. . 7 AF 5‘
X1 23611 FLAGS Various flags to control the BASIC system. s CODE. i %3 P .
X1 23512 TV FLAG Flags associated with the television. 176 VAL go i fes 6. 'd'f
X2 23613 ERR SP Address of item on machine stack to be used as :;Z ;ﬁ:’ B;. g: g :Z gg icn;?:r
error return, : :
N2 23615 LIST SP Address of return address from automatic :;g $2hsl gi g: : ;gz gg il
listing. - g
N1 23617 MODE Specifies K, L, C, E or G cursor. 181 ASN A6 . ol res 6
2 23618 NEWPPC Line to be jumped to. 182 ACS 38 res 6.(h)
1 23620 NSPPC Statement number in line to be jumped to. 185 AN s oe a9 B
Poking first NEWPPC and then NSPPC forces a 184 LN 8. b res 7.h idr
jump to a specified statement in a line. 185 EXP B9 iy res 7.c ppdr
2 23621 PPC Line number of statement currently being lgg 'spgn gg‘ gﬁ : ';:: ;2 ':tgrr
executed. !
1 23623 SUBPPC Number within line of statement being 133 :g;‘ gg g": |h i ;:‘
executed. !
1 23624 BORDCR Border colour * 8; also contains the attributes 190 PEEK BE cp (i) res 7,(h)
normally used for the lower half of the screen. "%’"“‘“ IN BF G 8 res 7.2
2 23625 E PPC Number of current line (with program cursor). USR co i set0.b
X2 23627 VARS Address of variables. 193~ STRS I i oot 0.c
N2 23629 DEST Address of variable in assignment. 194 CHRS$ C2 P nz,NN set 0.d
X2 23631 CHANS Address of channel data. 195 NOT G ipNN set0,6
X2 23633 CURCHL Address of information currently being used for lgg g""“ gg ;3'!';:2?“ 2:: 3.“
input and output. ’
X2 23635 PROG Address of BASIC program. 198 AND C6 addaN set 0,(hl)
X2 23637 NXTLIN Address of next line in program. m e C7 rst 0 set 0,3
X2 23639 DATADD Address of terminator of last DATA item. i o c8 etz set 1.0
X2 23641 ELINE Address of command being typed in. v co ret set 1,C
2 23643 KCUR Address of cursor. 202 LINE CA jpzNN set 1.d
X2 23645 CHADD Address of the next character to be interpreted: 203 THEN cs set 1.
the character after the argument of PEEK, or the 204 TO cc call 2NN set 1.h
NEWLINE at the end of a POKE statement. 206 STEP CO call NN set 1.l
2 23647 XPTR Address of the character after the Bl marker. 206 DEFFN CE adc 3N set 1.(n)
X2 23649 WORKSP Address of temporary work space. 207 CAT CF rst 8 set 1.
X2 23651 STKBOT Address of bottom of calculator stack. 208 FORMAT Do ret nc set2b
X2 23653 STKEND Address of start of spare space. 209 MOVE D1 popde set2.c
N1 23655 BREG Calculator's b register. 210 ERASE D2 ip nc,NN set 2,d
N2 23656 MEM Address of area used for calculator's memory. 211 OPEN # D3 out (N).a set2.e
(Usually MEMBOT, but not always.) 212 CLOSE # D4 call ne,NN set 2,h
1 23658 FLAGS2 More flags. 213 MERGE D5 pushde set 2|

174 187

Appendix A

Code Character
126 =
120l

g T
12 [
130 F]

131 =

132)

133 1 |

13 K
135 s |

136 g

137 =y

138
139 [o

140 |m

M = |

142 B

144 (a)

145 (b)
146 (c)

147 (d)
148 (e)
149 (f)

150 (g

151 (h)

152 (i)

163 (i)

154 k) user
155 () graphics
156 (m)
157 (n)
168 (0)
L. 1 I
60 (g

161 r)

162 (s)

163 (t)

164 (u)
165 RND
166 INKEY$
167 Pl -
168 FN
169 POINT
186

Hex
7E

7F
80
81
82

85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
a1

92
93
94
95
96
97

99
9A
9B
9C
9D
9E
9F
A0
Al
A2
A3

A5
A6
A7
A8
A9

Z80 Assembler
Id a,hi)

Idaa
add a,b
add a,c
add a,d
add a.e
add a,h
add al
add a,(hl)
add a,a
adc a,b
adc a,c
adc ad
adc a,e
adc a,h
adc a,|l
adc a,(hl)
adc aa
sub b
subc
subd
sube
sub h
sub |
sub (hl)
sub a
sbcab
sbca.c
sbc a,d
sbcae
sbc a,h
sbc a,l
sbe a,(hl)
sbc a,a
and b
and ¢
and d
and e
and h
and
and (hl)
and a
xor b
Xor ¢

— after CB

bit 7,(hl)
bit 7,a
res 0,b
res 0,c
res 0,d
res 0.e
res 0,h
res 0,1
res 0,(hl)
res 0,a
res 1,b
res 1,c
res 1.d
res 1.e
res 1,h
res 1,
res 1,(hl)
res 1,a
res 2,b
res 2,c
res 2,d

Tes 2,e

res 2,h
res 2,1
res 2,(hl)
res 2,a
res 3,b
res 3,c
res 3,d
res 3.e
res 3,h
res 3,1
res 3,(hl)
res 3,a
res 4,b
res 4,c
res 4,d
res 4,e
res 4,h
res 4,1
res 4,(hl)
res 4,a
res 5,b
res 5,c

— after ED

Idli
cpi
ini
outi

ldd
cpd

Chapter 25

Notes Address Name Contents

X1 23659 DF Sz The number of lines (including one blank line) in
the lower part of the screen.

2 23660 S TOP The number of the top program line in automatic
listings.

2 23662 OLDPPC Line number to which CONTINUE jumps.

1 23664 OSPCC Number within line of statement to which
CONTINUE jumps.

N1 23665 FLAGX Various flags.

N2 23666 STRLEN Length of string type destination in assignment.

N2 23668 TADDR Address of next item in syntax table (very
unlikely to be useful).

2 23670 SEED The seed for RND. This is the variable that is set
by RANDOMIZE.

3 23672 FRAMES 3 byte (least significant first), frame counter.
Incremented every 20ms. See Chapter 18.

2 23675 UDG Address of 1st user-defined graphic. You can
change this for instance to save space by having
fewer user-defined graphics.

1 23677 COORDS x-coordinate of last point plotted.

1 23678 y-coordinate of last point plotted.

1 23679 P POSN 33-column number of printer position.

1 23680 PR CC Less significant byte of address of next position
for LPRINT to print at (in printer buffer).

1 23681 Not used.

2 23682 ECHO E 33-column number and 24-line number (in lower
half) of end of input buffer.

2 23684 DF CC Address in display file of PRINT position.

2° 23686 DFCCL Like DF CC for lower part of screen.

X1 23688 S POSN 33-column number for PRINT position.

X1 23689 24-line number for PRINT position.

X2 23690 SPOSNL Like S POSN for lower part.

1 23692 SCR CT Counts scrolls: it is always 1 more than the
number of scrolls that will be done before
stopping with scroll?. If you keep poking this
with a number bigger than 1 (say 265), the
screen will scroll on and on without asking you.

1 23693 ATTR P Permanent current colours, etc (as set up by
colour statements).

1 23694 MASK P Used for transparent colours, etc. Any bit that is

1 shows that the corresponding attribute bit is
taken not from ATTR P, but from what is already
on the screen.

175

Chapter 25

Notes Address Name Contents

N1 23695 ATTRT Temporary current colours, etc (as set up by
colour items).

N1 23696 MASK T Like MASK P, but temporary.

1 23697 P FLAG More flags.

N30 23698 MEMBOT Calculator's memory area; used to store
numbers that cannot conveniently be put on the
calculator stack.

2 23728 Not used.

2 23730 RAMTOP Address of last byte of BASIC system area.

2 23732 P-RAMT Address of last byte of physical RAM.

This program tells you the first 22 bytes of the variables area:

10 FOR n=0 TO 21
20 PRINT PEEK (PEEK 23627+256*PEEK 23628+n)
30 NEXT n

Try to match up the control variable n with the descriptions above.
Now change line 20 to

program itself.

* FROM.3RD EDITION

176

2325 + 200k PEEK 236 4 v\.)
20 PRINT PEEK (16509+n)

20 PRINT PEEK (23756+4n) *
This tells you the first 22 bytes of the program area. Match these up with the

Code
82
83

86
86
87

91
92
93

95

1

97
98

100
101
102
108
104
105
106
107
108
109
110
A8

Character

¥

UODB_F‘_“'D'(Q—"CD o oo

|

113
114
1156
116
117
118
119
120
121
122
123
124
125

——m N X g < C T OO

Hex
52
53

55
56
57
58
59
5A
5B
5E
5D
5
5F
60
61

62
63

65
66
67
68
69
BA
6B
6C
6D
6E
6F
70
24

72
73
74
75
76
77
78
79
7A
7B
7C
7D

280 Assembler
Id dd
Id de
Id d,h
Idd,l

Id d,{hi)
Idda
Ideb
Idec
Id ed
Id ee
Id e,h
Ide,l
Id e,(hl)
Idea
Idhb
Id h.c
Idhd
Id he
Id h,h
|dhl
|d h.(hl)
Idha
Id1b
Idlc
Idld ’
Idle »
Id Lh

id 1l

Id 1,(hi)
Idla

Id (hl),b
Id (hl),c
Id (hl),d
Id (hl),e
Id (hi),h
Id (hl),|
halt

Id (hl),a
Id a,b
Id a.c
Id a,d
Idae
Id a,h
Ida,l

— after CB

bit 2,d
bit 2,e
bit 2,h
bit 2,1
bit 2,(hl)
bit 2,a
bit 3,b
bit 3,¢
bit 3,d
bit 3,e
bit 3,h
bit 3.1
bit 3.(hl)
bit 3.a
bit 4,b
bit 4,¢
bit 4,d
bit 4,e
bit 4,h
bit 4,1
bit 4,(hl)
bit 4,a
bit 5,b
bit 5,¢
bit 5,d
bit 5,e
bit 5,h
bit 5,
bit 5,(hl)
bit 5,a
bit 6,b
bit 6,c
bit 6,d
bit 6,e
bit 6,h
bit 6,1
bit 6,(hl)
bit 6,a
bit 7,b
bit 7,¢
bit 7.d
bit 7,e
bit 7,h
bit 7.

Appendix A

— after ED
sbe hl,de
Id (NN),de

im 1

Id a,i

in e,(c)
out (c).e
adc hl,de
Id de,(NN)

im 2

Id ar

in h,(c)
out (c),h
sbe hl,hl
Id (NN),hl

rrd

in l,{c)
out (c),|
adc hihl
Id hl,(NN)

rid
in f,(c)

sbc hl,sp
Id (NN),sp

in a,(c)
out (c).a
adc hl,sp
Id sp.(NN)

186

Appendix A

Code
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
65
66
67
68
69
70
IAl
72
73
74
75
76
77
78
79

ooaﬁ

184

i
i
z\. pEna S

Character

N —

Eem———

oo ~NOYO AW
L——-—-—‘

]

O"fozgr-xc-—z:o*!moom>@j-vv nA-

Hex
26

27

287
29
2A1
2B|
2C)
20 |
2E |
2F

31|
32|
33
34
35 |
36 |
37
38

395-
34
3B
3C|
3D|
3E

40
41
42
43

45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51

Z80 Assembler

Id h,N
daa

jr 2,DIS
add hi.hl
Id hl,(NN)
dec hi
inc |

dec |

Id N
cpl

jr nc,DIS
Id sp,NN
Id (NN),a
inc sp
inc (hl)
dec (hl)
Id (hi),N
scf
jrc,DIS
add hl,sp
Id a,(NN)
dec sp
inc a
dec a

|d a,N
ccf

Id b,b

Id b,c

Id b,d

Id b,e

Id b,h

Id b,

Id b,(hl)
Id b,a
Idc.b
Idc.c
Idc.d
Idc.e

Id ¢,h
Idc,l

Id c,(hl)
Idc.a

Id d,b

Id d.c

— after CB - after ED
sla (hl)

slaa

srab

sra c

srad

sra e

sra h

sra |

sra (hl)

sra a

sl b

srlc

srld

srle

srlh

srl |

srl (hl)

srla

bit 0,b in b,(c)
bit 0,c out (c),b
bit 0,d sbc hl,bc
bit 0,e Id (NN),bc
bit 0,h neg

bit 0,1 retn

bit @,(hl) im 0

bit 0,a Idia

bit 1,b in c.(c)
bit 1,c out (c),c
bit 1,d adc hl,.bc
bit 1,e Id be,(NN)
bit 1,h

bit 1,1 reti

bit 1,(hl)

bit 1,a Idra

bit 2,b in d,(c)
bit 2,¢ out (c),d

CHAPTER

20

The character set

Appendix A

This is the complete Spectrum character set, with codes in decimal and hex. If one
imagines the codes as being Z80 machine code instructions, then the right hand
columns give the corresponding assembly language mnemonics. As you are probably
aware if you understand these things, certain Z80 instructions are compounds

starting with CBh or EDh; the two right hand columns give these.
Z80 Assembler

Code Character

™
SOwCoNOOOPRPRLNN=S

’
ww‘(da RN RN NNNNN 1 —
gwn%—-gmmﬂamawnasaoﬂozagaiamj

8&

w
~J

not used

PRINT comma
EDIT

cursor left
cursor right
cursor down
cursor up
DELETE
ENTER
number

not used

INK control
PAPER control
FLASH control
BRIGHT control
INVERSE control
OVER control
AT control
]'AB control

s not used

space

%

Hex
00
0
02
03
04
05
06
07
08
09
0A
0B
oc
oD
0E
OF
10
"
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22

23
24

25

nop

Id be, NN
Id (bc),a
inc bc
incb
decb

Id b,N
rica

ex af,af’
add hl,bc
Id a,(bc)
dec bc
incc
dec c

Id c,N
rrca

djnz DIS
Id de,NN
Id (de).a
inc de
inc d
decd

Id d.N
rla

jr DIS
add hl,de
|d a,(de)
dec de
inc e
dec e

Id e,N
rra
jrnz,DIS
Id hi,NN
[d (NN),h
inc hl
inc h
dec h

— after CB

ricb
rlcc
ricd
ric e
rich
ric |
ric (hi)
ric a
mch
re ¢
rcd
rce
rrc h
rrc |
rre (hl)
rnca
b
e
rd
rle
rlh
rl

rl (hl)
rla
mb
e
rrd
me
rmh
rr

rr (hl)
rra
sla b
sla ¢
slad

sla e
sla h

sla |

— after ED

183

Chapter 26

Using machine code

Summary
USR with numeric argument

This chapter is written for those who understand Z80 machine code, the set of
instructions that the Z8@ processor chip uses. If you do not, but would like to, there
are plenty of books about it. You want to get one called something along the lines of
‘280 Machine code (or assembly language) for the absolute beginner’, and if it
mentions the Spectrum, so much the better.

These programs are normally written in assembly language, which, although
cryptic, are not too difficult to understand with practice. (You can see the assembly
language instructions in Appendix A.) However, to run them on the computer you
need to code the program into a sequence of bytes — in this form it is called machine
code. This translation is usually done by the computer itself, using a program called
an assembler. There is no assembler built in to the Spectrum, but you may well be
able to buy one on cassette. Failing that, you will have to do the translation yourself,
provided that the program is not too long.

Let's take as an example the program

Id be, 99
ret

which loads the bc register pair with 99. This translates into the four machine code
bytes 1, 99, @ (for Id bc, 99) and 201 (for ret). (If you look up 1 and 201 in Appendix A,
you will find Id bc, NN — where NN stands for any two-byte number — and ret.)

When you have got your machine code program, the next step is to get it into the
computer. (An assembler would probably do this automatically.) You need to decide
whereabouts in memory to put it, and the best thing is to make extra space for it
between the BASIC area and the user-defined graphics.

Suppose, for instance, that you have a 16K Spectrum. To start off with, the top end
of RAM has

User-defined graphics
l 1

T UDG=32600 P RAMT=32767
RAMTOP=32599

If you type

CLEAR 32499
179

Chapter 26

this will give you a space of 100 (for good measure) bytes starting at address 32500.

| T
100 spare ; ;
bytes User-defined graphics
3 e B
32500 UDG=32600 P RAMT=32767

RAMTOP=32499

To put in the machine code program, you would run a BASIC program something
like

10 LET a=32500

20 READ n: POKE a,n

30 LET a=a+1: GO TO 20
40 DATA 1,99,0,201

(This will stop with report E Out of DATA when it has filled in the four bytes you
specified.)

To run the machine code, you use the function USR — but this time with a numeric
argument, the starting address. Its result is the value of the bc register on return from
the machine code program, so if you do

PRINT USR 32500

you get the answer 99.
The return address to the BASIC is stacked in the usual way, so return is by a Z80
ret instruction. You should not use the iy and i registers in a machine code routine.
The control, data and address busses are all exposed at the back of the Spectrum,
so you can do almost anything with a Spectrum that you can with a Z80. Sometimes,
though, the Spectrum hardware might get in the way. Here is a diagram of the
exposed connections at the back:

IOROGE VIDEO BUS ROMCS
A‘i4A1|2 Si/ 9|VSLOT @V @V CK A0 |1 | | I | I l\/ U |RESETA7 A6 A5 A4 BUiACK A1
A15A13 D7 SLOTDO D1 D2 D6 D5 D3 D4 MI WR - +12V MI A8 A10
» NT HALT lO WA T -12V RFSH

You can save your machine code program easily enough with

SAVE ““some name” CODE 32500,4
180

B B vo o oo (Tacws £\ pret L) acd WU b 15 pal

Chapter 26

On the face of it, there is no way of saving it so that when loaded it automatically
runs itself, but you can get round this by using a BASIC program.

10 LOAD """ CODE 32500,4
20 PRINT USR 32500
Do first
SAVE “some name” LINE
and then
SAVE “xxxx” CODE 32500,4

LOAD ““some name”

will then load and automatically run the BASIC program, and the BASIC program will
load and run the machine code.

s
R 2Rk ol Vasoad erpetar roufins (o sabn oF 00Tk

Xelolon ok O)D5k>
2 Sound roulin 0&3 pom\’ 0!‘5\\ ML Y {fr P\\’eL (%Wr.
Row g¥eh)) BE as¥ Jor Lnght ok neti (Ligh veb # Long res)

3 COPAXM»TM Rld oF omACK (P pwm\fﬁ3~cm VL-I.
antetd or O B Lat u'ubmfta et Do dacbled & adk

L'-‘P\' R ke At prlid

“ O«ﬁu&\m&n can bt prde) b reulu ok OEFUR
W;\b_\ WL L& pout 5 L. %.\.« c,“\LL\ dinelble Cv&nftﬁ)
o ham awdil gl g (OUT FR R) ond oubl
i g —

181

